Ph 135b: Solution Set 1

January 21, 2004

1

We have the conversion factor

\[1.78 \times 10^{-36} \text{kg} = 1/c^2\text{eV} \]

and in natural units

\[6.58 \times 10^{-25} \text{GeV s} = 1 \]
\[0.197 \text{ GeV fm} = 1 \]
\[3 \times 10^8 \text{ m s}^{-1} = 1 \]

so,

\[
G_N = 6.67 \times 10^{-11} \left(\frac{10^{15}}{0.197\text{GeV}} \right)^3 (1.783 \times 10^{-27}\text{GeV}^{-1}) (6.58 \times 10^{-25}\text{GeV})^2
\]

(1)

\[
= 6.71 \times 10^{-39} \text{GeV}^{-2}
\]

(2)

2

Nuclear radius is \(10^{-15}\text{m} = 1\text{fm} \) and \(\hbar = c = 1\). From the uncertainty relation,

\[\Delta x \Delta p \sim \hbar \]

we get that \(\Delta p \sim 1\text{fm}^{-1} = 197\text{MeV}\). This is much greater than the rest mass of an electron so the electrons energy is \(E_e \sim 197\text{MeV}\). Now Tritium decay gives electrons with energy of the order of 5KeV which is much smaller and so is not compatible.

3

The 10 baryons with charm zero are

\[
uuu, ddd, sss, uud, udd, uss, uus, dds, dss, uds
\]

the six with charm 1 are

\[
uuc, ddc, ssc, udc, usc, dsc
\]

the three with charm 2 are

\[
ucc, dcc, scc
\]

and the one with charm 3 is

\[
ccc
\]
The time-dependent Schrödinger equation in cgs-esu units is
\[i\hbar \frac{\partial}{\partial t} \psi(x, t) = -\frac{\hbar^2}{2m_e} \nabla_x^2 \psi(x, t) - \frac{e^2}{|x|} \psi(x, t) \]

Now we choose our units of mass so that \(m_e = 1 \). To make the above equation parameter free we also choose
\[\frac{2m_e e^2}{\hbar} = 1 \]
which has dimensions of length. Hence this sets our length unit. Similarly, by looking at the above equation we can see that \(2m_e/\hbar \) has dimensions of time and by setting it to 1 we fix our time unit. In our new units the time-dependent Schrödinger equation looks like
\[i\frac{\partial}{\partial t} \psi(x, t) = -\nabla_x^2 \psi(x, t) - \frac{1}{|x|} \psi(x, t) \]

If we consider a more complicated atom with more electrons and a larger nucleus no new parameters are introduced. Additional electron-electron interaction terms are introduced and a dimensionless integer valued number \(Z \) which counts the nuclear charge are needed but that is all. However if we wish to consider more than one nucleus or molecules we need to introduce a parameter which gives the nuclei separation.

If we include the effects of spin and magnetism we also need to introduce new parameters for example the spin-orbit coupling is a relativistic effect and so we can no longer treat \(c \) as infinite. Similarly if we wish to include hyperfine interactions we must introduce g factors and treat the mass of the nucleons as finite.

In QED we do not have elastic photon-photon scattering at lowest order but at higher order we have diagrams such as the one below.

![Figure 1: Photon-Photon Scattering](image_url)