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1 Introduction

This note constitutes a discussion of angular momentum in quantum mechan-
ics. Several results are obtained, important to understanding how to solve
problems involving rotational symmetries in quantum mechanics. We will of-
ten give only partial proofs to the theorems, with the intent that the reader
complete them as necessary. In the hopes that this will prove to be a useful
reference, the discussion is rather more extensive than usually encountered
in quantum mechanics textbooks.

2 Rotations: Conventions and Parameteriza-

tions

A rotation by angle θ about an axis e (passing through the origin in R3)
is denoted by Re(θ). We’ll denote an abstract rotation simply as R. It is
considered to be “positive” if it is performed in a clockwise sense as we look
along e. As with other transformations, our convention is that we think of a
rotation as a transformation of the state of a physical system, and not as a
change of coordinate system (sometimes referred to as the “active view”). If
Re(θ) acts on a configuration of points (“system”) we obtain a new, rotated,
configuration: If x is a point of the old configuration, and x′ is its image
under the rotation, then:

x′ = Re(θ)x. (1)

That is, R is a linear transformation described by a 3×3 real matrix, relative
to a basis (e1, e2, e3).

Geometrically, we may observe that:

Re(−θ) = R−1
e (θ), (2)

I = Re(0) = Re(2πn), n = integer, (3)

Re(θ)Re(θ
′) = Re(θ + θ′), (4)

Re(θ + 2πn) = Re(θ), n = integer, (5)

R−e = Re(−θ). (6)
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A product of the form Re(θ)Re′(θ
′) means “first do Re′(θ

′), then do Re(θ)
to the result”. All of these identities may be understood in terms of ma-
trix identities, in addition to geometrically. Note further that the set of all
rotations about a fixed axis e forms a one-parameter abelian group.

It is useful to include in our discussion of rotations the notion also of
reflections: We’ll denote the space reflection with respect to the origin by P ,
for parity:

Px = −x. (7)

Reflection in a plane through the origin is called a mirroring. Let e be a unit
normal to the mirror plane. Then

Mex = x − 2e(e · x), (8)

since the component of the vector in the plane remains the same, and the
normal component is reversed.

Theorem: 1.

[P,Re(θ)] = 0. (9)

[P,Me] = 0. (10)

(The proof of this is trivial, since P = −I.)
2.

PMe = MeP = Re(π). (11)

3. P , Me, and Re(π) are “involutions”, that is:

P 2 = I. (12)

M2
e = I. (13)

[Re(π)]2 = I. (14)

Theorem: Let Re(θ) be a rotation and let e′, e′′ be two unit vectors per-
pendicular to unit vector e such that e′′ is obtained from e′ according
to:

e′′ = Re(θ/2)e′. (15)

Then
Re(θ) = Me′′Me′ = Re′′(π)Re′(π). (16)

Hence, every rotation is a product of two mirrorings, and also a product
of two rotations by π.
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Figure 1: Proof of the theorem that a rotation about e by angle θ is equivalent
to the product of two mirrorings or rotations by π.

Proof: We make a graphical proof, referring to Fig. 1.

Theorem: Consider the spherical triangle in Fig. 2.

1. We have
Re3(2α3)Re2(2α2)Re1(2α1) = I, (17)

where the unit vectors {ei} are as labelled in the figure.

2. Hence, the product of two rotations is a rotation:

Re2(2α2)Re1(2α1) = Re3(−2α3). (18)

The set of all rotations is a group, where group multiplication is
application of successive rotations.

Proof: Use the figure and label M1 the mirror plane spanned by e2, e3, etc.
Then we have:

Re1(2α1) = M3M2

Re2(2α2) = M1M3

Re3(2α3) = M2M1. (19)
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Figure 2: Illustration for theorem. Spherical triangle vertices are defined as
the intersections of unit vectors e1, e2, e3 on the surface of the unit sphere.

Thus,

Re3(2α3)Re2(2α2)Re1(2α1) = (M2M1)(M1M3)(M3M2) = I. (20)

The combination of two rotations may thus be expressed as a problem
in spherical trigonometry.

As a corollary to this theorem, we have the following generalization of
the addition formula for tangents:

Theorem: If Re(θ) = Re′′(θ
′′)Re′(θ

′), and defining:

τττ = e tan θ/2

τττ ′ = e′ tan θ′/2

τττ ′′ = e′′ tan θ′′/2, (21)

then

τττ =
τττ ′ + τττ ′′ + τττ ′′ × τττ ′

1 − τττ ′ · τττ ′′
. (22)

This will be left as an exercise for the reader to prove.
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Theorem: The most general mapping x → x′ of R3 into itself, such that
the origin is mapped into the origin, and such that all distances are
preserved, is a linear, real orthogonal transformation Q:

x′ = Qx, where QTQ = I, and Q∗ = Q. (23)

Hence,
x′ · y′ = x · y ∀ pointsx,y ∈ R3. (24)

For such a mapping, either:

1. det(Q) = 1, Q is called a proper orthogonal transformation, and
is in fact a rotation. In this case,

x′ × y′ = (x × y)′ ∀ pointsx,y ∈ R3. (25)

or,

2. det(Q) = −1, Q is called an improper orthogonal transforma-
tion, and is the product of a reflection (parity) and a rotation. In
this case,

x′ × y′ = −(x × y)′ ∀ pointsx,y ∈ R3. (26)

The set of all orthogonal transformations on three dimensions forms a
group (denoted O(3)), and the set of all proper orthogonal transforma-
tions forms a subgroup (O+(3) or SO(3) of O(3)), in 1 : 1 correspon-
dence with, hence a “representation” of, the set of all rotations.

Proof of this theorem will be left to the reader.

3 Some Useful Representations of Rotations

Theorem: We have the following representations of rotations (u is a unit
vector):

Ru(θ)x = uu · x + [x − uu · x] cos θ + u × x sin θ, (27)

and
Ru(θ) = eθu·JJJ = I + (u · JJJ )2(1 − cos θ) + u · JJJ sin θ, (28)
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where JJJ = (J1,J2,J3) with:

J1 =




0 0 0
0 0 −1
0 1 0


 , J2 =




0 0 1
0 0 0
−1 0 0


 , J3 =




0 −1 0
1 0 0
0 0 0


 .

(29)

Proof: The first relation may be seen by geometric inspection: It is a de-
composition of the rotated vector into components along the axis of
rotation, and the two orthogonal directions perpendicular to the axis
of rotation.

The second relation may be demonstrated by noticing that Jix = ei×x,
where e1, e2, e3 are the three basis unit vectors. Thus,

(u · JJJ )x = u × x, (30)

and
(u · JJJ )2x = u × (u × x) = u(u · x) − x. (31)

Further,

(u · JJJ )2n+m = (−)n(u · JJJ )m, n = 1, 2, . . . ; m = 1, 2. (32)

The second relation then follows from the first.

Note that

Tr [Ru(θ)] = Tr
[
I + (u · JJJ )2(1 − cos θ)

]
. (33)

With

J 2
1 =




0 0 0
0 −1 0
0 0 −1


 ,J 2

2 =



−1 0 0
0 0 0
0 0 −1


 ,J 2

3 =



−1 0 0
0 −1 0
0 0 0


 , (34)

we have
Tr [Ru(θ)] = 3 − 2(1 − cos θ) = 1 + 2 cos θ. (35)

This is in agreement with the eigenvalues of Ru(θ) being 1, eiθ, e−iθ.
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Theorem: (Euler parameterization) Let R ∈ O+(3). Then R can be
represented in the form:

R = R(ψ, θ, φ) = Re3(ψ)Re2(θ)Re3(φ), (36)

where the Euler angles ψ, θ, φ can be restricted to the ranges:

0 ≤ ψ < 2π; 0 ≤ θ ≤ π; 0 ≤ φ < 2π. (37)

With these restrictions, the parameterization is unique, unless R is a
rotation about e3, in which case Re3(α) = R(α− β, 0, β) for any β.

Proof: We refer to Fig. 3 to guide us. Let e′
k = Rek, k = 1, 2, 3, noting

that it is sufficient to consider the transformation of three orthogonal
unit vectors, which we might as well take to be intitially along the basis
directions. We must show that we can orient e′

k in any desired direction
in order to prove that a general rotation can be described as asserted
in the theorem.

e
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Figure 3: Illustration for visualizing the Euler angle theorem. It may be
useful to think of the figure as the action of R on a “rigid body”, a unit disk
with a unit normal attached, and two orthogonal unit vectors attached in the
plane of the disk. The original and final positions of the disk and attached
unit vectors are shown.
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We note that e′
3 does not depend on φ since this first rotation is about

e3 itself. The polar angles of e′
3 are given precisely by θ and ψ. Hence

θ and ψ are uniquely determined (within the specified ranges, and
up to the ambiguous case mentioned in the theorem) by e′

3 = Re3,
which can be specified to any desired orientation. The angle φ is then
determined uniquely by the orientation of the pair (e′

1, e
′
2) in the plane

perpendicular to e′
3.

We note that the rotation group [O+(3)] is a group of infinite order (or, is
an “infinite group”, for short). There are also an infinite number of subgroups
of O+(3), including both finite and infinite subgroups. Some of the important
finite subgroups may be classified as:

1. The Dihedral groups, Dn, corresponding to the proper symmetries of
an n-gonal prism. For example, D6 ⊂ O+(3) is the group of rotations
which leaves a hexagonal prism invariant. This is a group of order 12,
generated by rotations Re3(2π/6) and Re2(π).

2. The symmetry groups of the regular solids:

(a) The symmetry group of the tetrahedron.

(b) The symmetry group of the octahedron, or its “dual” (replace
vertices by faces, faces by vertices) the cube.

(c) The symmetry group of the icosahedron, or its dual, the dodeca-
hedron.

We note that the tetrahedron is self-dual.

An example of an infinite subgroup of O+(3) is D∞, the set of all rotations
which leaves a circular disk invariant, that is, including all rotations about
the normal to the disk, and rotations by π about any axis in the plane of the
disk.

4 Special Unitary Groups

The set of all n × n unitary matrices forms a group (under normal matrix
multiplication), denoted by U(n). U(n) includes as a subgroup, the set of
all n × n unitary matrices with determinant equal to 1 (“unimodular”, or
“special”. This subgroup is denoted by SU(n), for “Special Unitary” group.
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Figure 4: A hexagonal prism, to illustrate the group D6.

The group of 2 × 2 unimodular unitary matrices, SU(2), has a special
connection with O+(3), which is very important in quantum mechanics. Con-
sider the real vector space of all 2 × 2 traceless hermitian matrices, which
we denote by V3. The “3” refers to the fact that this is a three-dimensional
vector space (even though it consists of 2×2 matrices). Hence, it can be put
into 1 : 1 correspondence with Euclidean 3-space, R3. We may make this cor-
respondence an isometry by introducing a positive-definite symmetric scalar
product on V3:

(X, Y ) =
1

2
Tr(XY ), ∀X, Y ∈ V3. (38)

Let u be any matrix in SU(2): u−1 = u† and det(u) = 1. Consider the
mapping:

X → X ′ = uXu†. (39)

We demonstrate that this is a linear mapping of V3 into itself: If X is her-
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mitian, so is X ′. If X is traceless then so is X ′:

Tr(X ′) = Tr(uXu†) = Tr(Xuu†) = Tr(X). (40)

This mapping of V3 into itself also preserves the norms, and hence, the scalar
products:

(X ′, X ′) =
1

2
Tr(X ′X ′)

=
1

2
Tr(uXu†uXu†)

= (X,X). (41)

The mapping is therefore a rotation acting on V3 and we find that to every
element of SU(2) there corresponds a rotation.

Let us make this notion of a connection more explicit, by picking an
orthonormal basis (σ1, σ2, σ3) of V3, in the form of the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (42)

Note that the Pauli matrices form an orthonormal basis:

1

2
Tr(σασβ) = δαβ. (43)

We have the products:

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2. (44)

Different Pauli matrices anti-commute:

{σα, σβ} ≡ σασβ + σβσα = 2δαβI (45)

The commutation relations are:

[σα, σβ] = 2iεαβγσγ . (46)

Any element of V3 may be written in the form:

X = x · σσσ =
3∑

i=1

xiσi, (47)
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where x ∈ R3. This establishes a 1 : 1 correspondence between elements of
V3 and R3. We note that

1

2
Tr [(a · σσσ)(b · σσσ)] = a · b, (48)

and

(a · σσσ)(b · σσσ) =
3∑

i=1

aibiσ
2
i +

3∑

i=1

∑

j 6=i
aibjσiσj

= (a · b)I + i(a × b) · σσσ. (49)

Finally, we may see that the mapping is isometric:

(X, Y ) =
1

2
Tr(XY ) =

1

2
Tr [(x · σσσ)(y · σσσ)] = x · y. (50)

Let’s investigate SU(2) further, and see the relevance of V3: Every unitary
matrix can be expressed as the exponential of a skew-hermitian (A† = −A)
matrix. If the unitary matrix is also unimodular, then the skew-hermitian
matrix can be selected to be traceless. Hence, every u ∈ SU(2) is of the form
u = e−iH , where H = H† and Tr(H) = 0. For every real unit vector e and
every real θ, we define ue(θ) ∈ SU(2) by:

u(θ) = exp
(
− i

2
θe · σσσ

)
. (51)

Any element of SU(2) can be expressed in this form, since every traceless
hermitian matrix is a (real) linear combination of the Pauli matrices.

Now let us relate ue(θ) to the rotation Re(θ):

Theorem: Let x ∈ R3, and X = x · σσσ. Let

u(θ) = exp
(
− i

2
θe · σσσ

)
, (52)

and let
ue(θ)Xu

†
e(θ) = X ′ = x′ · σσσ. (53)

Then
x′ = Re(θ)x. (54)
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Proof: Note that

ue(θ) = exp
(
− i

2
θe · σσσ

)
= I cos

θ

2
− i(e · σσσ) sin

θ

2
. (55)

This may be demonstrated by using the identity (a · σσσ)(b · σσσ) = (a ·
b)I + (a × b) · σσσ, and letting a = b = e to get (e · σ)2 = I, and using
this to sum the exponential series.

Thus,

x′ · σσσ = ue(θ)Xu
†
e(θ)

=

[
I cos

θ

2
− i(e · σσσ) sin

θ

2

]
(x · σσσ)

[
I cos

θ

2
+ i(e · σσσ) sin

θ

2

]

= x · σ cos2 θ

2
+ (e · σσσ)(x · σσσ)(e · σσσ) sin2 θ

2

+ [−i(e · σσσ)(x · σσσ) + i(x · σσσ)(e · σσσ)] sin
θ

2
cos

θ

2
. (56)

But

(e · σσσ)(x · σσσ) = (e · x)I + i(e × x) · σσσ (57)

(x · σσσ)(e · σσσ) = (e · x)I − i(e × x) · σσσ (58)

(e · σσσ)(x · σσσ)(e · σσσ) = (e · x)(e · σ) + i [(e × x) · σσσ] (e · σσσ)

= (e · x)(e · σσσ) + i2 [(e × x) × e] · σσσ
= 2(e · x)(e · σσσ) − x · σσσ, (59)

where we have made use of the identity (C × B) × A = B(A · C) −
C(A · B) to obtain (e × x) × e = x − e(e · x). Hence,

x′ · σσσ =

{
cos2 θ

2
x + sin2 θ

2
[2(e · x)e − x]

}
· σσσ

+i sin
θ

2
cos

θ

2
[−2i(e × x) · σσσ] . (60)

Equating coefficients of σ we obtain:

x′ = x cos2 θ

2
+ [2(e · x)e − x] sin2 θ

2
+ 2(e × x) sin

θ

2
cos

θ

2
= (e · x)e + [x − (e · x)e] cos θ + (e × x) sin θ

= Re(θ)x. (61)
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Thus, we have shown that to every rotation Re(θ) corresponds at least
one u ∈ SU(2), and also to every element of SU(2) there corresponds a
rotation. We may restate the theorem just proved in the alternative form:

uXu† = u(x · σσσ)u† = x · (uσσσu†)
= x · σσσ = [Re(θ)x] · σ = x ·

[
R−1

e (θ)σσσ
]
. (62)

But x is arbitrary, so
uσσσu† = R−1

e (θ)σσσ, (63)

or,
u−1σσσu = Re(θ)σσσ. (64)

More explicitly, this means:

u−1σiu =
3∑

j=1

Re(θ)ijσj. (65)

There remains the question of uniqueness: Suppose u1 ∈ SU(2) and
u2 ∈ SU(2) are such that

u1Xu
†
1 = u2Xu

†
2, ∀X ∈ V3. (66)

Then u−1
2 u1 commutes with every X ∈ V3 and therefore this matrix must

be a multiple of the identity (left for the reader to prove). Since it is uni-
tary and unimodular, it must equal I or −I. Thus, there is a two-to-one
correspondence between SU(2) and O+(3): To every rotation Re(θ) corre-
sponds the pair ue(θ) and −ue(θ) = ue(θ + 2π). Such a mapping of SU(2)
onto O+(3) is called a homomorphism (alternatively called an unfaithful
representation).

We make this correspondence precise in the following:

Theorem: 1. There is a two-to-one correspondence between SU(2) and
O+(3) under the mapping:

u→ R(u), where Rij(u) =
1

2
Tr(u†σiuσj), (67)

and the rotation Re(θ) corresponds to the pair:

Re(θ) ↔ {ue(θ),−ue(θ) = ue(θ + 2π)}. (68)
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2. In particular, the pair of elements {I,−I} ⊂ SU(2) maps to I ∈
O+(3).

3. This mapping is a homomorphism: u→ R(u) is a representation
of SU(2), such that

R(u′u′′) = R(u′)R(u′′), ∀u′, u′′ ∈ SU(2). (69)

That is, the “multiplication table” is preserved under the map-
ping.

Proof: 1. We have

u−1σiu =
3∑

j=1

Re(θ)ijσj. (70)

Multiply by σk and take the trace:

Tr(u−1σiuσk) = Tr




3∑

j=1

Re(θ)ijσjσk


 , (71)

or

Tr(u†σiuσk) =
3∑

j=1

Re(θ)ijTr(σjσk). (72)

But 1
2
Tr(σjσk) = δjk, hence

Rik(u) = Re(θ)ik =
1

2
Tr(u†σiuσk). (73)

Proof of the remaining statements is left to the reader.

A couple of comments may be helpful here:

1. Why did we restrict u to be unimodular? That is, why are we consider-
ing SU(2), and not U(2). In fact, we could have considered U(2), but
the larger group only adds unnecessary complication. All U(2) adds is
multiplication by an overall phase factor, and this has no effect in the
transformation:

X → X ′ = uXu†. (74)

This would enlarge the two-to-one mapping to infinity-to-one, appar-
ently without achieving anything of interest. So, we keep things as
simple as we can make them.
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2. Having said that, can we make things even simpler? That is, can we
impose additional restrictions to eliminate the “double-valuedness” in
the above theorem? The answer is no – SU(2) has no subgroup which
is isomorphic with O+3.

5 Lie Groups: O+(3) and SU(2)

Def: An abstract n-dimensional Lie algebra is an n-dimensional vector
space V on which is defined the notion of a product of two vectors (∗)
with the properties (x, y, z ∈ V, c a complex number):

1. Closure: x ∗ y ∈ V.

2. Distributivity:

x ∗ (y + z) = x ∗ y + x ∗ z (75)

(y + z) ∗ x = y ∗ x+ z ∗ x. (76)

3. Associativity with respect to multiplication by a complex number:

(cx) ∗ y = c(x ∗ y). (77)

4. Anti-commutativity:
x ∗ y = −y ∗ x (78)

5. Non-associative (“Jacobi identity”):

x ∗ (y ∗ z) + z ∗ (x ∗ y) + y ∗ (z ∗ x) = 0 (79)

We are especially interested here in Lie algebras realized in terms of matri-
ces (in fact, every finite-dimensional Lie algebra has a faithful representation
in terms of finite-dimensional matrices):

Def: A Lie algebra of matrices is a vector space M of matrices which is
closed under the operation of forming the commutator:

[M ′,M ′′] = M ′M ′′ −M ′′M ′ ∈ M, ∀M ′,M ′′ ∈ M. (80)

Thus, the Lie product is the commutator: M ′ ∗M ′′ = [M ′,M ′′]. The
vector space may be over the real or complex fields.
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Let’s look at a couple of relevant examples:

1. The set of all real skew-symmetric 3×3 matrices is a three-dimensional
Lie algebra. Any such matrix is a real linear combination of the matri-
ces

J1 =




0 0 0
0 0 −1
0 1 0


 , J2 =




0 0 1
0 0 0
−1 0 0


 , J3 =




0 −1 0
1 0 0
0 0 0




(81)
as defined already earlier. The basis vectors satisfy the commutation
relations:

[Ji,Jj] = εijkJk. (82)

We say that this Lie algebra is the Lie algebra associated with the
group O+(3). Recall that

Ru(θ) = eθu·JJJ . (83)

2. The set of all 2×2 skew-hermitian matrices is a Lie algebra of matrices.
This is also 3-dimensional, and if we write:

Sj =
i

2
σj, j = 1, 2, 3, (84)

we find {S} satisfy the “same” commutation relations as {J }:

[Si,Sj] = εijkSk. (85)

This is the Lie algebra associated with the group SU(2). Recall that

ue(θ) = eθe·(−
i
2
σσσ) = eθe·SSS . (86)

This is also a real Lie algebra, i.e., a vector space over the real field,
even though the matrices are not in general real.

We see that the Lie algebras of O+(3) and SU(2) have the same “struc-
ture”, i.e., a 1 : 1 correspondence can be established between them which is
linear and preserves all commutators. As Lie algrebras, the two are isomor-
phic.

We explore a bit more the connection between Lie algebras and Lie
groups. Let M be an n-dimensional Lie algebra of matrices. Associated
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with M there is an n-dimensional Lie group G of matrices: G is the matrix
group generated by all matrices of the form eX , where X ∈ M. We see
that O+(3) and SU(2) are Lie groups of this kind – in fact, every element
of either of these groups corresponds to an exponential of an element of the
appropriate Lie algrebra.1

6 Continuity Structure

As a finite dimensional vector space, M has a continuity structure in the
usual sense (i.e., it is a topological space with the “usual” topology). This
induces a continuity structure (topology) on G (for O+(3) and SU(2), there
is nothing mysterious about this, but we’ll keep our discussion a bit more
general for a while). G is an n-dimensional manifold (a topological space
such that every point has a neighborhood which can be mapped homeo-
morphically onto n-dimensional Euclidean space). The structure of G (its
multiplication table) in some neighborhood of the identity is uniquely deter-
mined by the structure of the Lie algebra M. This statement follows from
the Campbell-Baker-Hausdorff theorem for matrices: If matrices X, Y are
sufficiently “small”, then eXeY = eZ , where Z is a matrix in the Lie algebra
generated by matrices X and Y . That is, Z is a series of repeated commu-
tators of the matrices X and Y . Thus, we have the notion that the local
structure of G is determined solely by the structure of M as a Lie algebra.

We saw that the Lie algebras of O+(3) and SU(2) are isomorphic, hence
the group O+(3) is locally isomorphic with SU(2). Note, on the other hand,
that the properties

(u · J )3 = −(u · J ) and (u · J )2n+m = (−)n(u · J )m, (87)

for all positive integers n,m, are not shared by the Pauli matrices, which
instead satisfy:

(u · σ)3 = u · σ. (88)

Such algebraic properties are outside the realm of Lie algebras (the products
being taken are not Lie products). We also see that (as with O+(3) and

1This latter fact is not a general feature of Lie groups: To say that G is generated
by matrices of the form eX means that G is the intersection of all matrix groups which
contain all matrices eX where X ∈ M. An element of G may not be of the form eX .
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SU(2)) it is possible for two Lie algebras to have the same local structure,
while not being globally isomorphic.

A theorem describing this general situation is the following:

Theorem: (and definition) To every Lie algebra M corresponds a unique
simply-connected Lie group, called the Universal Covering Group,
defined by M. Denote this group by GU . Every other Lie group with
a Lie algebra isomorphic with M is then isomorphic with the quotient
group of GU relative to some discrete (central – all elements which
map to the identity) subgroup of GU iself. If the other group is simply
connected, it is isomorphic with GU itself.

We apply this to rotations: The group SU(2) is the universal covering
group defined by the Lie algebra of the rotation group, hence SU(2) takes
on special significance. We note that SU(2) can be parameterized as the
surface of a unit sphere in four dimensions, hence is simply connected (all
closed loops may be continuously collapsed to a point). On the other hand,
O+(3) is isomorphic with the quotient group SU(2)/I(2), where I(2) is the
inversion group in two dimensions:

I(2) =
{(

1 0
0 1

)
,
(−1 0

0 −1

)}
. (89)

7 The Haar Integral

We shall find it desirable to have the ability to perform an “invariant inte-
gral” on the manifolds O+(3) and SU(2), which in some sense assigns an
equal “weight” to every element of the group. The goal is to find a way of
democratically “averaging” over the elements of a group. For a finite group,
the correspondence is to a sum over the group elements, with the same weight
for each element.

For the rotation group, let us denote the desired “volume element” by
d(R). We must find an expression for d(R) in terms of the parameterization,
for some parameterization of O+(3). For example, we consider the Euler
angle parameterization. Recall, in terms of Euler angles the representation
of a rotation as:

R = R(ψ, θ, φ) = Re3(ψ)Re2(θ)Re3(φ). (90)
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We will argue that the appropriate volume element must be of the form:

d(R) = Kdψ sin θdθdφ, K > 0. (91)

The argument for this form is as follows: We have a 1 : 1 correspondence
between elements of O+(3) and orientations of a rigid body (such as a sphere
with a dot at the north pole, centered at the origin; let I ∈ O+(3) correspond
to the orientation with the north pole on the +e3 axis, and the meridian along
the +e2 axis, say). We want to find a way to average over all positions of the
sphere, with each orientation receiving the same weight. This corresponds
to a uniform averaging over the sphere of the location of the north pole.

Now notice that if R(ψ, θ, φ) acts on the reference position, we obtain
an orientation where the north pole has polar angles (θ, ψ). Thus, the (θ, ψ)
dependence of d(R) must be dψ sin θdθ. For fixed (θ, ψ), the angle φ describes
a rotation of the sphere about the north-south axis – the invariant integral
must correspond to a uniform averaging over this angle. Hence, we intuitively
arrive at the above form for d(R). The constant K > 0 is arbitrary; we pick
it for convenience. We shall choose K so that the integral over the entire
group is one:

1 =
∫

O+(3)
d(R) =

1

8π2

∫ 2π

0
dψ

∫ π

0
sin θdθ

∫ 2π

0
dφ. (92)

We can thus evaluate the integral of a (suitably behaved) function f(R) =
f(ψ, θ, φ) over O+(3):

f(R) =
∫

O+(3)
f(R)d(R) =

1

8π2

∫ 2π

0
dψ

∫ π

0
sin θdθ

∫ 2π

0
dφf(ψ, θ, φ). (93)

The overbar notation is intended to suggest an average.
What about the invariant integral over SU(2)? Given the answer for

O+(3), we can obtain the result for SU(2) using the connection between the
two groups. First, parameterize SU(2) by the Euler angles:

u(ψ, θ, φ) = exp
(
− i

2
ψσ3

)
exp

(
− i

2
θσ2

)
exp

(
− i

2
φσ3

)
, (94)

with
0 ≤ ψ < 2π; 0 ≤ θ ≤ π; 0 ≤ φ < 4π. (95)

Notice that the ranges are the same as for O+(3), except for the doubled
range required for φ. With these ranges, we obtain every element of SU(2),
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uniquely, up to a set of measure 0 (when θ = 0, π). The integral of function
g(u) on SU(2) is thus:

g(u) =
∫

SU(2)
g(u)d(u) =

1

16π2

∫ 2π

0
dψ

∫ π

0
sin θdθ

∫ 4π

0
dφg [u(ψ, θ, φ)] , (96)

with the volume element normalized to give unit total volume:

∫

SU(2)
d(u) = 1. (97)

A more precise mathematical treatment is possible, making use of mea-
sure theory; we’ll mention some highlights here. The goal is to define a
measure µ(S) for suitable subsets of O+(3) (or SU(2)) such that if R0 is any
element of O+(3), then:

µ(SR0) = µ(S), where SR0 = {RR0|R ∈ S} . (98)

Intuitively, we think of the following picture: S may be some region in O+(3),
and SR0 is the image of S under the mapping R → RR0. The idea then, is
that the regions S and SR0 should have the same “volume” for all R ∈ O+(3).
Associated with such a measure we have an integral.

R

S

SR

0
0

Figure 5: Set S mapping to set SR0, under the rotation R0.
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It may be shown2 that a measure with the desired property exists and is
unique, up to a factor, for any finite-dimensional Lie group. Such a measure
is called a Haar measure. The actual construction of such a measure must
deal with coordinate system issues. For example, there may not be a good
global coordinate system on the group, forcing the consideration of local
coordinate systems.

Fortunately, we have already used our intuition to obtain the measure
(volume element) for the Euler angle parameterization, and a rigorous treat-
ment would show it to be correct. The volume element in other parameter-
izations may be found from this one by suitable Jacobian calculations. For
example, if we parameterize O+(3) by:

Re(θ) = eθθθ·JJJ , (99)

where θθθ ≡ θe, and |θθθ| ≤ π, then the volume element (normalized again to
unit total volume of the group) is:

d(R) =
1

4π2

1 − cos θ

θ2
d3(θθθ), (100)

where d3(θθθ) is an ordinary volume element on R3. Thus, the group-averaged
value of f(R) is:

∫

O+(3)
f(R)d(R) =

1

4π2

∫

O+(3)

1 − cos θ

θ2
d3(θθθ)f

(
eθθθ·JJJ

)
(101)

=
1

4π2

∫

4π
dΩe

∫ 2π

0
(1 − cos θ)dθf

(
eθθθ·JJJ

)
. (102)

Alternatively, we may substitute 1− cos θ = 2 sin2 θ
2
. For SU(2) we have the

corresponding result:

d(u) =
1

4π2
dΩe sin2 θ

2
dθ, 0 ≤ θ ≤ 2π. (103)

We state without pro0f that the Haar measure is both left- and right-
invariant. That is, µ(S) = µ(SR0) = µ(R0S) for all R0 ∈ O+(3) and for all
measurable sets S ⊂ O+(3). This is to be hoped for on “physical” grounds.
The invariant integral is known as the Haar integral, or its particular real-
ization for the rotation group as the Hurwitz integral.

2This may be shown by construction, starting with a small neighborhood of the identity,
and using the desired property to transfer the right volume element everywhere.
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8 Unitary Representations of SU(2) (and O+(3))

A unitary representation of SU(2) is a mapping

u ∈ SU(2) → U(u) ∈ U(n) such that U(u′)U(u′′) = U(u′u′′), ∀u′, u′′ ∈ SU(2).
(104)

That is, we “represent” the elements of SU(2) by unitary matrices (not
necessarily 2 × 2), such that the multiplication table is preserved, either
homomorphically or isomorphically. We are very interested in such mappings,
because they permit the study of systems of arbitrary angular momenta,
as well as providing the framework for adding angular momenta, and for
studying the angular symmetry properties of operators. We note that, for
every unitary representation R → T (R) of O+(3) there corresponds a unitary
representation of SU(2): u→ U(u) = T [R(u)]. Thus, we focus our attention
on SU(2), without losing any generality.

For a physical theory, it seems reasonable to to demand some sort of
continuity structure. That is, whenever two rotations are near each other,
the representations for them must also be close.

Def: A unitary representation U(u) is called weakly continuous if, for any
two vectors φ, ψ, and any u:

lim
u′→u

〈φ| [U(u′) − U(u)]ψ〉 = 0. (105)

In this case, we write:

w-lim
u′→u

U(u′) = U(u), (106)

and refer to it as the “weak-limit”.

Def: A unitary representation U(u) is called strongly continuous if, for
any vector φ and any u:

lim
u′→u

‖ [U(u′) − U(u)]φ‖ = 0. (107)

In this case, we write:

s-lim
u′→u

U(u′) = U(u), (108)

and refer to it as the “strong-limit”.
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Strong continuity implies weak continuity, since:

|〈φ| [U(u′) − U(u)]ψ〉| ≤ ‖φ‖‖ [U(u′) − U(u)]ψ‖ (109)

We henceforth (i.e., until experiment contradicts us) adopt these notions of
continuity as physical requirements.

An important concept in representation theory is that of “(ir)reducibility”:

Def: A unitary representation U(u) is called irreducible if no subspace of
the Hilbert space is mapped into itself by every U(u). Otherwise, the
representation is said to be reducible.

Irreducible representations are discussed so frequently that the jargon “ir-
rep” has emerged as a common substitute for the somewhat lengthy “irre-
ducible representation”.

Lemma: A unitary representation U(u) is irreducible if and only if every
bounded operator Q which commutes with every U(u) is a multiple of
the identity.

Proof of this will be left as an exercise. Now for one of our key theorems:

Theorem: If u→ U(u) is a strongly continuous irreducible representation of
SU(2) on a Hilbert space H, then H has a finite number of dimensions.

Proof: The proof consists of showing that we can place a finite upper bound
on the number of mutually orthogonal vectors in H: Let E be any one-
dimensional projection operator, and φ, ψ be any two vectors in H.
Consider the integral:

B(ψ, φ) =
∫

SU(2)
d(u)〈ψ|U(u)EU(u−1)φ〉. (110)

This integral exists, since the integrand is continuous and bounded,
because U(u)EU(u−1) is a one-dimensional projection, hence of norm
1.

Now

|B(ψ, φ)| =

∣∣∣∣∣

∫

SU(2)
d(u)〈ψ|U(u)EU(u−1)φ〉

∣∣∣∣∣

≤
∫

SU(2)
d(u)|〈ψ|U(u)EU(u−1)φ〉| (111)

≤
∫

SU(2)
d(u)‖ψ‖‖φ‖‖U(u)EU(u−1)‖ (112)

≤ ‖ψ‖‖φ‖, (113)
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where we have made use of the Schwarz inequality and of the fact∫
SU(2) d(u) = 1.

B(ψ, φ) is linear in φ, anti-linear in ψ, and hence defines a bounded
operator B0 such that:

B(ψ, φ) = 〈ψ|B0φ〉. (114)

Let u0 ∈ SU(2). Then

〈ψ|U(u0)B0U(u−1
0 )φ〉 =

∫

SU(2)
d(u)〈ψ|U(u0u)EU((u0u)

−1)φ〉(115)

=
∫

SU(2)
d(u)〈ψ|U(u)EU(u−1)φ〉 (116)

= 〈ψ|B0φ〉, (117)

where the second line follows from the invariance of the Haar integral.
Since ψ and φ are arbitrary vectors, we thus have;

U(u0)B0 = B0U(u0), ∀u0 ∈ SU(2). (118)

Since B0 commutes with every element of an irreducible representation,
it must be a multiple of the identity, B0 = pI.

∫

SU(2)
d(u)U(u)EU(u−1) = pI. (119)

Now let {φn|n = 1, 2, . . . , N} be a set of N orthonormal vectors,
〈φn|φm〉 = δnm, and take E = |φ1〉〈φ1|. Then,

〈φ1|
∫

SU(2)
d(u)U(u)EU(u−1)|φ1〉 = p〈φ1|I|φ1〉 = p, (120)

=
∫

SU(2)
d(u)〈φ1|U(u)|φ1〉〈φ1|U(u−1)|φ1〉

=
∫

SU(2)
d(u)|〈φ1|U(u)|φ1〉|2 > 0. (121)

Note that the integral cannot be zero, since the integrand is a contin-
uous non-negative definite function of u, and is equal to one for u = I.
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Thus, we have:

pN =
N∑

n=1

〈φn|pIφn〉 (122)

=
N∑

n=1

∫

SU(2)
d(u)〈φn|U(u)EU(u−1)φn〉 (123)

=
N∑

n=1

∫

SU(2)
d(u)〈φn|U(u)|φ1〉〈φ1|U(u−1)φn〉 (124)

=
N∑

n=1

∫

SU(2)
d(u)〈U(u)φ1|φn〉〈φn|U(u)φ1〉 (125)

=
∫

SU(2)
d(u)〈U(u)φ1|

N∑

n=1

|φn〉〈φn|U(u)φ1〉 (126)

≤
∫

SU(2)
d(u)〈U(u)φ1|I|U(u)φ1〉 (127)

≤
∫

SU(2)
d(u)‖U(u)φ1‖2 = 1. (128)

(129)

That is, pN ≤ 1. But p > 0, so N < ∞, and hence H cannot contain
an arbitrarily large number of mutually orthogonal vectors. In other
words, H is finite-dimensional.

Thus, we have the important result that if U(u) is irreducible, then the
operators U(u) are finite-dimensional unitary matrices. We will not have to
worry about delicate issues that might arise if the situation were otherwise.3

Before actually building representations, we would like to know whether
it is “sufficient” to consider only unitary representations of SU(2).

Def: Two (finite dimensional) representations U and W of a group are called
equivalent if and only if they are similar, that is, if there exists a
fixed similarity transformation S which maps one representation onto
the other:

U(u) = SW (u)S−1, ∀u ∈ SU(2). (130)

Otherwise, the representations are said to be inequivalent.

3The theorem actually holds for any compact Lie group, since a Haar integral normal-
ized to one exists.
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Note that we can think of equivalence as just a basis transformation. The
desired theorem is:

Theorem: Any finite-dimensional (continuous) representation u→W (u) of
SU(2) is equivalent to a (continuous) unitary representation u→ U(u)
of SU(2).

Proof: We prove this theorem by constructing the required similarity trans-
formation: Define matrix

P =
∫

SU(2)
d(u)W †(u)W (u). (131)

This matrix is positive definite and Hermitian, since the integrand is.
Thus P has a unique positive-definite Hermitian square root S:

P = P † > 0 =⇒
√
P = S = S† > 0. (132)

Now, let u0, u ∈ SU(2). We have,

W †(u0)W
†(u)W (u) =

[
W †(uu0)W (uu0)

]
W (u−1

0 ). (133)

From the invariance of the Haar integral, we find:

W †(u0)P =
∫

SU(2)
d(u)

[
W †(uu0)W (uu0)

]
W (u−1

0 ) (134)

= PW (u−1
0 ), ∀u0 ∈ SU(2). (135)

Now define, for all u ∈ SU(2),

U(u) = SW (u)S−1. (136)

The mapping u→ U(u) defines a continuous representation of SU(2),
and furthermore:

U †(u)U(u) =
[
SW (u)S−1

]† [
SW (u)S−1

]

=
(
S−1

)†
W †(u)S†SW (u)S−1

=
(
S−1

)†
PW †(u−1)W (u)S−1

=
(
S−1

)†
PS−1

=
(
S−1

)†
S†SS−1

= I. (137)

That is, U(u) is a unitary representation, equivalent to W (u).

26



We have laid the fundamental groundwork: It is sufficient to determine all
unitary finite-dimensional irreducible representations of SU(2).

This brings us to some important “tool theorems” for working in group
representaion theory.

Theorem: Let u → D′(u) and u → D′′(u) be two inequivalent irreducible
representations of SU(2). Then the matrix elements ofD′(u) andD′′(u)
satisfy: ∫

SU(2)
d(u)D′

mn(u)D
′′
rs(u) = 0. (138)

Proof: Note that the theorem can be thought of as a sort of orthogonality
property between matrix elements of inequivalent representations. Let
V ′ be the N ′-dimensional carrier space of the representation D′(u), and
let V ′′ be the N ′′-dimensional carrier space of the representation D′′(u).
Let A be any N ′ ×N ′′ matrix. Define another N ′ ×N ′′ matrix, A0 by:

A0 ≡
∫

SU(2)
d(u)D′(u−1)AD′′(u). (139)

Consider (in the sceond line, we use the invariance of the Haar integral
under the substitution u→ uu0):

D′(u0)A0 =
∫

SU(2)
d(u)D′(u0u

−1)AD′′(u)

=
∫

SU(2)
d(u)D′(u−1)AD′′(uu0)

=
∫

SU(2)
d(u)D′(u−1)AD′′(u)D′′(u0)

= A0D
′′(u0), ∀u0 ∈ SU(2). (140)

Now define N ′ ×N ′ matrix B′ and N ′′ ×N ′′ matrix B′′ by:

B′ ≡ A0A
†
0, B′′ ≡ A†

0A0. (141)

Then we have:

D′(u)B′ = D′(u)A0A
†
0

= A0D
′′(u)A†

0

= A0A
†
0D

′(u)

= B′D′(u), ∀u ∈ SU(2). (142)
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Similarly,
D′′(u)B′′ = B′′D′′(u), ∀u ∈ SU(2). (143)

Thus, B′, an operator on V ′, commutes with all elements of irreducible
representation D′, and is therefore a multiple of the identity operator
on V ′: B′ = b′I ′. Likewise, B′′ = b′′I ′′ on V ′′.

If A0 6= 0, this can be possible only if N ′ = N ′′, and A0 is non-
singular. But if A0 is non-singular, then D′ and D′′ are equivalent,
since D′(u)A0 = A0D

′′, ∀u ∈ SU(2). But this contradicts the as-
sumption in the theorem, hence A0 = 0. To complete the proof, select
Anr = 1 for any desired n, r and set all of the other elements equal to
zero.

Next, we quote the corresponding “orthonormality” theorem among ele-
ments of the same irreducible representation:

Theorem: Let u → D(u) be a (continuous) irreducible representation of
SU(2) on a carrier space of dimension d. Then

∫

SU(2)
d(u)Dmn(u

−1)Drs(u) = δmsδnr/d. (144)

Proof: The proof of this theorem is similar to the preceding theorem. Let
A be an arbitrary d× d matrix, and define

A0 ≡
∫

SU(2)
d(u)D(u−1)AD(u). (145)

As before, we may show that

D(u)A0 = A0D(u), (146)

and hence A0 = aI is a multiple of the identity. We take the trace to
find the multiple:

a =
1

d
Tr

[∫

SU(2)
d(u)D(u−1)AD(u)

]
(147)

=
1

d

∫

SU(2)
d(u)Tr

[
D(u−1)AD(u)

]
(148)

=
1

d
TrA. (149)
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This yields the result

∫

SU(2)
d(u)D(u−1)AD(u) =

Tr(A)

d
I. (150)

Again, select A with any desired element equal to one, and all other
elements equal to 0, to finish the proof.

We consider now the set of all irreducible representations of SU(2). More
precisely, we do not distinguish between equivalent representations, so this set
is the union of all equivalence classes of irreducible representations. Use the
symbol j to label an equivalence class, i.e., j is an index, taking on values in
an index set in 1:1 correspondence with the set of all equivalence classes. We
denote D(u) = Dj(u) to indicate that a particular irreducible representation
u → D(u) belongs to equivalence class “j”. Two representations Dj(u) and
Dj′(u) are inequivalent if j 6= j ′. Let dj be the dimension associated with
equivalence class j. With this new notation, we may restate our above two
theorems in the form:

∫

SU(2)
d(u)Dj

mn(u
−1)Dj′

rs =
1

d
δjj′δmsδnr. (151)

This is an important theorem in representation theory, and is sometimes
referred to as the “General Orthogonality Relation”.

For much of what we need, we can deal with simpler objects than the full
representation matrices. In particular, the traces are very useful invariants
under similarity transformations. So, we define:

Def: The character χ(u) of a finite-dimensional representation u → D(u)
of SU(2) is the function on SU(2):

χ(u) = Tr [D(u)] . (152)

We immediately remark that the characters of two equivalent representations
are identical, since

Tr
[
SD(u)S−1

]
= Tr [D(u)] . (153)

In fact, we shall see that the representation is completely determined by the
characters, up to similarity transformations.

Let χj(u) denote the character of irreducible representation Dj(u). The
index j uniquely determines χj(u). We may summarize some important
properties of characters in a theorem:
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Theorem: 1. For any finite-dimensional representation u→ D(u) of SU(2):

χ(u0uu
−1
0 ) = χ(u), ∀u, u0 ∈ SU(2). (154)

2.
χ(u) = χ∗(u) = χ(u−1) = χ(u∗), ∀u ∈ SU(2). (155)

3. For the irreducible representations u→ Dj(u) of SU(2):
∫

SU(2)
d(u)χj(u0u

−1)Dj′(u) =
1

dj
δjj′D

j(u0) (156)

∫

SU(2)
d(u)χj(u0u

−1)χj′(u) =
1

dj
δjj′χj(u0) (157)

∫

SU(2)
d(u)χj(u

−1)χj′(u) =
∫

SU(2)
d(u)χ∗

j(u)χj′(u) = δjj′. (158)

Proof: (Selected portions)

1.

χ(u0uu
−1
0 ) = Tr

[
D(u0uu

−1
0 )
]

= Tr
[
D(u0)D(u)D(u−1

0 )
]

= χ(u). (159)

2.

χ(u−1) = Tr
[
D(u−1)

]
= Tr

[
D(u)−1

]

= Tr
[
(SU(u)S−1)−1

]
, where U is a unitary representation,

= Tr
[
S−1U †(u)S

]

= Tr
[
U †(u)

]

= χ∗(u). (160)

The property χ(u) = χ(u∗) holds for SU(2), but not more gener-
ally [e.g., it doesn’t hold for SU(3)]. It holds for SU(2) because
the replacement u → u∗ gives an equivalent representation for
SU(2). Let us demonstrate this. Consider the parameterization:

u = ue(θ) = cos
θ

2
I − i sin

θ

2
e · σσσ. (161)
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Now form the complex conjugate, and make the following similar-
ity transformation:

σ2u
∗σ−1

2 = σ2

[
cos

θ

2
I + i sin

θ

2
e · σσσ∗σ−1

2

]

= cos
θ

2
I + i sin

θ

2
[e1σ2σ1σ2 − e2σ2σ2σ2 + e3σ2σ3σ2]

= cos
θ

2
I − i sin

θ

2
e · σσσ

= u. (162)

We thus see that u and u∗ are equivalent representations for
SU(2). Now, for representation D (noting that iσ2 ∈ SU(2)):

D(u) = D(iσ2)D(u∗)D−1(iσ2), (163)

and hence, χ(u) = χ(u∗).

3. We start with the general orthogonality relation, and use

χj(u0u
−1) =

∑

m,n

Dj
nm(u0)D

j
mn(u

−1), (164)

to obtain
∫

SU(2)
d(u)χj(u0u

−1)Dj′

rs(u) =
∫

SU(2)
d(u)

∑

m,n

Dj
nm(u0)D

j
mn(u

−1)Dj′

rs(u)

=
∑

m,n

Dj
nm(u0)

1

dj
δjj′δnrδms

=
1

dj
δjj′D

j
rs(u0). (165)

Now take the trace of both sides of this, as a matrix equation:

∫

SU(2)
d(u)χj(u0u

−1)χj′(u) =
1

dj
δjj′χj(u0). (166)

Let u0 = I. The character of the identity is just dj, hence we
obtain our last two relations.
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9 Reduction of Representations

Theorem: Every continuous finite dimensional representation u→ D(u) of
SU(2) is completely reducible, i.e., it is the direct sum:

D(u) =
∑

r

⊕Dr(u) (167)

of a finite number of irreps Dr(u). The multiplicities mj (the number
of irreps Dr which belong to the equivalence class of irreps characterized
by index j) are unique, and they are given by:

mj =
∫

SU(2)
d(u)χj(u

−1)χ(u), (168)

where χ(u) = Tr [D(u)]. Two continuous finite dimensional represen-
tations D′(u) and D′′(u) are equivalent if and only if their characters
χ′(u) and χ′′(u) are identical as functions on SU(2).

Proof: It is sufficient to consider the case where D(u) is unitary and re-
ducible. In this case, there exists a proper subspace of the carrier
space of D(u), with projection E ′, which is mapped into itself by D(u):

E ′D(u)E ′ = D(u)E ′. (169)

Take the hermitian conjugate, and relabel u→ u−1:

[
E ′D(u−1)E ′

]†
=

[
D(u−1)E ′

]†
(170)

E ′D†(u−1)E ′ = E ′D†(u−1) (171)

E ′D(u)E ′ = E ′D(u). (172)

Hence, E ′D(u) = D(u)E ′, for all elements u in SU(2).

Now, let E ′′ = I − E ′ be the projection onto the subspace orthogonal
to E ′. Then:

D(u) = (E ′ + E ′′)D(u)(E ′ + E ′′) (173)

= E ′D(u)E ′ + E ′′D(u)E ′′ (174)

(since, e.g., E ′D(u)E ′′ = D(u)E ′E ′′ = D(u)E ′(I − E ′) = 0). This
formula describes a reduction of D(u). If D(u) restricted to subspace
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E ′ (or E ′′) is reducible, we repeat the process until we have only ir-
reps remaining. The finite dimensionality of the carrier space of D(u)
implies that there are a finite number of steps to this procedure.

Thus, we obtain a set of projections Er such that

I =
∑

r

Er (175)

ErEs = δrsEr (176)

D(u) =
∑

r

ErD(u)Er, (177)

where D(u) restricted to any of subspaces Er is irreducible:

D(u) =
∑

r

⊕Dr(u). (178)

The multiplicity follows from

∫

SU(2)
d(u)χj(u

−1)χj′(u) = δjj′. (179)

Thus,

∫

SU(2)
d(u)χj(u

−1)χ(u) =
∫

SU(2)
χj(u

−1)Tr

[∑

r

⊕Dr(u)

]
(180)

= the number of terms in the sum

with Dr = Dj (181)

= mj. (182)

Finally, suppose D′(u) and D′′ are equivalent. We have already shown
that the characters must be identical. Suppose, on the other hand, that
D′(u) and D′′ are inequivalent. In this case, the characters cannot be
identical, or this would violate our other relations above, as the reader
is invited to demonstrate.

10 The Clebsch-Gordan Series

We are ready to embark on solving the problem of the addition of angular
momenta. Let D′(u) be a representation of SU(2) on carrier space V ′, and
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let D′′(u) be a representation of SU(2) on carrier space V ′′, and assume V ′

and V ′′ are finite dimensional. Let V = V ′ ⊗ V ′′ denote the tensor product
of V ′ and V ′′.

The representations D′ and D′′ induce a representation on V in a natural
way. Define the representation D(u) on V in terms of its action on any φ ∈ V
of the form φ = φ′ ⊗ φ′′ as follows:

D(u)(φ′ ⊗ φ′′) = [D′(u)φ′] ⊗ [D′′(u)φ′′] . (183)

Denote this representation as D(u) = D′(u) ⊗D′′(u) and call it the tensor
product of D′ and D′′. The matrix D(u) is the Kronecker product of D′(u)
and D′′(u). For the characters, we clearly have

χ(u) = χ′(u)χ′′(u). (184)

We can extend this tensor product definition to the product of any finite
number of representations.

The tensor product of two irreps, Dj′(u) and Dj′′(u), is in general not
irreducible. We know however, that it is completely reducible, hence a direct
sum of irreps:

Dj′(u) ⊗Dj′′(u) =
∑

j

⊕Cj′j′′jDj(u). (185)

This is called a “Clebsch-Gordan series”. The Cj′j′′j coefficients are some-
times referred to as Clebsch-Gordan coefficients, although we tend to use that
name for a different set of coefficients. These coefficients must, of course, be
non-negative integers. We have the corresponding identity:

χj′(u)χj′′(u) =
∑

j

Cj′j′′jχj(u). (186)

We now come to the important theorems on combining angular momenta
in quantum mechanics:

Theorem:

1. There exists only a countably infinite number of inequivalent ir-
reps of SU(2). For every positive integer (2j+1), j = 0, 1

2
, 1, 3

2
, . . .,

there exists precisely one irrep Dj(u) (up to similarity transforma-
tions) of dimension (2j + 1). As 2j runs through all non-negative
integers, the representations Dj(u) exhaust the set of all equiva-
lence classes.
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2. The character of irrep Dj(u) is:

χj [ueee(θ)] =
sin 2j+1

2
θ

sin 1
2
θ
, (187)

and
χj(I) = dj = 2j + 1. (188)

3. The representation Dj(u) occurs precisely once in the reduction
of the 2j-fold tensor product (⊗u)2j, and we have:

∫

SU(2)
d(u)χj(u) [Tr(u)]2j = 1. (189)

Proof: We take from
∫
SU(2) d(u)χ

∗
j(u)χj′(u) = δjj′ the suggestion that the

characters of the irreps are a complete set of orthonormal functions
on a Hilbert space of class-functions of SU(2) (A class-function is a
function which takes the same value for every element in a conjugate
class).

Consider the following function on SU(2):

ω(u) ≡ 1 − 1

8
Tr
[
(u− I)†(u− I)

]
=

1

2

[
1 +

1

2
Tr(u)

]
, (190)

which satisfies the conditions 1 > ω(u) ≥ 0 for u 6= I, and u(I) = 1
(e.g., noting that ueee(θ) = cos θ

2
I + a traceless piece). Hence, we have

the lemma: If f(u) is a continuous function on SU(2), then

lim
n→∞

∫
SU(2) d(u)f(u) [ω(u)]n
∫
SU(2) d(u) [ω(u)]n

= f(I). (191)

The intuition behind this lemma is that, as n → ∞, [ω(u)]n becomes
increasingly peaked about u = I.

Thus, if Dj(u) is any irrep of SU(2), then there exists an integer n such
that: ∫

SU(2)
d(u)χj(u

−1) [Tr(u)]n 6= 0. (192)

Therefore, the irrep Dj(u) occurs in the reduction of the tensor product
(⊗u)n.
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Next, we apply the Gram-Schmidt process to the infinite sequence
{[Tr(u)]n |n = 0, 1, 2, . . .} of linearly independent class functions on SU(2)
to obtain the orthonormal sequence {Bn(u)|n = 0, 1, 2, . . .} of class
functions:
∫

SU(2)
d(u)B∗

n(u)Bm(u) =
1

π

∫ 2π

0
dθ sin2 θ

2
B∗
n [ue3(θ)]Bm [ue3(θ)] = δnm,

(193)
where we have used the measure d(u) = 1

4π2dΩeee sin2 θ
2
dθ and the fact

that, since Bn is a class function, it has the same value for a rotation
by angle θ about any axis.

Now, write
βn(θ) = Bn [ue3(θ)] = Bn [ueee(θ)] . (194)

Noting that

[Tr(u)]n =

(
2 cos

θ

2

)n
=

n∑

m=0

(
n

m

)
eiθ(

n
2
−m), (195)

we may obtain the result

βn(θ) =
sin [(n+ 1)θ/2]

sin θ/2
= Bn [ueee(θ)] = B∗

n [ueee(θ)] , (196)

by adopting suitable phase conventions for the B’s. Furthermore,
∫

SU(2)
d(u)B∗

n(u) [Tr(u)]m =
{

0 if n > m,
1 if n = m.

(197)

We need to prove now that the functions Bn(u) are characters of the
irreps. We shall prove this by induction on n. First, B0(u) = 1; B0(u) is
the character of the trivial one-dimensional identity representation:
D(u) = 1. Assume now that for some integer n0 ≥ 0 the functions
Bn(u) for n = 0, 1, . . . , n0 are all characters of irreps. Consider the
reduction of the representation (⊗u)n0+1:

[Tr(u)]n0+1 =
n0∑

n=0

Nn0,nBn(u) +
∑

j∈Jn0

cn0,jχj(u), (198)

where Nn0,n and cn0,j are integers ≥ 0, and the cn0,j sum is over irreps
Dj such that the characters are not in the set {Bn(u)|n = 0, 1, . . . , n0}
(j runs over a finite subset of the Jn0 index set).
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With the above fact that:
∫

SU(2)
d(u)B∗

n(u) [Tr(u)]n0+1 =
{

0 if n > n0 + 1,
1 if n = n0 + 1,

(199)

we have,
Bn0+1(u) =

∑

j∈Jn0

cn0,jχj(u). (200)

Squaring both sides, and averaging over SU(2) yields

1 =
∑

j∈Jn0

(cn0,j)
2. (201)

But the cn0,j are integers, so there is only one term, with cn0,j = 1.
Thus, Bn0+1(u) is a character of an irrep, and we see that there are a
countably infinite number of (inequivalent) irreducible representations.

Let us obtain the dimensionality of the irreducible representation. The
Bn(u), n = 0, 1, 2, . . . correspond to characters of irreps. We’ll label
these irredusible representations Dj(u) according to the 1 : 1 mapping
2j = n. Then

dj = χj(I) = B2j(I) = β2j(0) (202)

= lim
θ→0

sin [(2j + 1)θ/2]

sin θ/2
(203)

= 2j + 1. (204)

Next, we consider the reduction of the tensor product of two irreducible
representations of SU(2). This gives our “rule for combining angular momen-
tum”. That is, it tells us what angular momenta may be present in a system
composed of two components with angular momenta. For example, it may
be applied to the combination of a spin and an orbital angular momentum.

Theorem: Let j1 and j2 index two irreps of SU(2). Then the Clebsch-
Gordan series for the tensor product of these representations is:

Dj1(u) ⊗Dj2(u) =
j1+j2∑

j=|j1−j2|
⊕Dj(u). (205)
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Equivalently,

χj1(u)χj2(u) =
j1+j2∑

j=|j1−j2|
χj(u) =

∑

j

Cj1j2jχj(u), (206)

where

Cj1j2j =
∫

SU(2)
d(u)χj1(u)χj2(u)χj(u) (207)

=





1 iff j1 + j2 + j is an integer, and a triangle can
be formed with sides j1, j2, j,

0 otherwise.

(208)

The proof of this theorem is straightforward, by considering

Cj1j2j =
1

π

∫ 2π

0
dθ sin

[
(j1 +

1

2
)θ
]
sin

[
(j2 +

1

2
)θ
] j∑

m=−j
e−imθ, (209)

etc., as the reader is encouraged to carry out.
We have found all the irreps of SU(2). Which are also irreps of O+(3)?

This is the subject of the next theorem:

Theorem: If 2j is an odd integer, then Dj(u) is a faithful representation
of SU(2), and hence is not a representation of O+(3). If 2j > 0 is an
even integer (and hence j > 0 is an integer), then Reee(θ) → Dj[ueee(θ)]
is a faithful representation of O+(3). Except for the trivial identity
representation, all irreps of O+(3) are of this form.

The proof of this theorem is left to the reader.
We will not concern ourselves especially much with issues of constructing

a proper Hilbert space, such as completeness, here. Instead, we’ll concentrate
on making the connection between SU(2) representation theory and angular
momentum in quantum mechanics a bit more concrete. We thus introduce
the quantum mechanical angular momentum operators.

Theorem: Let u→ U(u) be a (strongly-)continuous unitary representation
of SU(2) on Hilbert space H. Then there exists a set of 3 self-adjoint
operators Jk, k = 1, 2, 3 such that

U [ueee(θ)] = exp(−iθeee · JJJ). (210)
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To keep things simple, we’ll consider now U(u) = D(u), where D(u) is
a finite-dimensional representation – the appropriate extension to the
general case may be demonstrated, but takes some care, and we’ll omit
it here.

1. The function D[ueee(θ)] is (for eee fixed), an infinitely differentiable
function of θ. Define the matrices J(eee) by:

J(eee) ≡ i

{
∂

∂θ
D [ueee(θ)]

}

θ=0

. (211)

Also, let J1 = J(eee1), J2 = J(eee2), J3 = J(eee3). Then

J(eee) = eee · JJJ =
3∑

k=1

(eee · eeek)Jk. (212)

For any unit vector eee and any θ, we have

D [ueee(θ)] = exp(−iθeee · JJJ). (213)

The matrices Jk satisfy:

[Jk, J`] = iεk`mJm. (214)

The matrices −iJk, k = 1, 2, 3 form a basis for a representation of
the Lie algebra of O+(3) under the correspondence:

Jk → −iJk, k = 1, 2, 3. (215)

The matrices Jk are hermitian if and only if D(u) is unitary.

2. The matrices Jk, k = 1, 2, 3 form an irreducible set if and only if
the representation D(u) is irreducible. If D(u) = Dj(u) is irre-
ducible, then for any eee, the eigenvalues of eee · JJJ are the numbers
m = −j,−j + 1, . . . , j − 1, j, and each eigenvalue has multiplicity
one. Furthermore:

JJJ2 = J2
1 + J2

2 + J2
3 = j(j + 1). (216)

3. For any representation D(u) we have

D(u)JJJ2D(u−1) = JJJ2; [Jk,JJJ
2] = 0, k = 1, 2, 3. (217)
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Proof: (Partial) Consider first the case where D(u) = Dj(u) is an irrep. Let
Mj = {m|m = −j, . . . , j}, let eee be a fixed unit vector, and define the
operators Fm(eee) (with m ∈Mj) by:

Fm(eee) ≡ 1

4π

∫ 4π

0
dθeimθDj[ueee(θ)]. (218)

Multiply this defining equation by Dj[ueee(θ
′)]:

Dj[ueee(θ
′)]Fm(eee) =

1

4π

∫ 4π

0
dθeimθDj[ueee(θ + θ′)] (219)

=
1

4π

∫ 4π

0
dθeim(θ−θ′)Dj[ueee(θ)] (220)

= e(−imθ
′)Fm(eee). (221)

Thus, either Fm(eee) = 0, or e(−imθ
′) is an eigenvalue of Dj[ueee(θ

′)]. But

χj[ueee(θ)] =
j∑

n=−j
e−inθ, (222)

and hence,

Tr[Fm(eee)] =
{

1 if m ∈Mj,
0 otherwise.

(223)

Therefore, Fm(eee) 6= 0.

We see that the {Fm(eee)} form a set of 2j+1 independent one-dimensional
projection operators, and we can represent the Dj(u) by:

Dj[ueee(θ)] =
j∑

m=−j
e−imθFm(eee). (224)

From this, we obtain:

J(eee) ≡ i

{
∂

∂θ
Dj [ueee(θ)]

}

θ=0

=
j∑

m=−j
mFm(eee), (225)

and
Dj[ueee(θ)] = exp [−iθJ(eee)] , (226)

which is an entire function of θ for fixed eee.
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Since every finite-dimensional continuous representation D(u) is a di-
rect sum of a finite number of irreps, this result holds for any such
representation:

D[ueee(θ)] = exp [−iθJ(eee)] . (227)

Let www be a unit vector with components wk, k = 1, 2, 3. Consider
“small” rotations about www:

uwww(θ) = ueee1(θw1)ueee2(θw2)ueee3(θw3)ueee(θ,www)[α(θ,www)], (228)

where α(θ,www) = O(θ2) for small θ. Thus,

exp [−iθJ(www)] = e−iθw1J1e−iθw2J2e−iθw3J3e−iαJ(eee). (229)

Expanding the exponentials and equating coefficients of terms linear in
θ yields the result:

J(www) = w1J1 + w2J2 + w3J3 = www · JJJ. (230)

To obtain the commutation relations, consider

ueee1(θ)ueee2(θ
′)u−1

eee1
(θ) (231)

=

(
cos

θ

2
I − i sin

θ

2
σ1

)(
cos

θ′

2
I − i sin

θ′

2
σ2

)
(232)

(
cos

θ

2
I + i sin

θ

2
σ1

)
(233)

= cos
θ′

2
I − i sin

θ′

2
(cos θσ2 + sin θσ3) (234)

= ueee2 cos θ+eee3 sin θ(θ
′). (235)

Thus,

exp(−iθJ1) exp(−iθ′J2) exp(iθJ1) = exp [−iθ′(J2 cos θ + J3 sin θ)] .
(236)

Expanding the exponentials, we have:

∞∑

n=0

∞∑

`=0

∞∑

m=0

θn+mθ′
`J

n
1 J

`
2J

m
1

n!`!m!
(−i)n+`im =

∞∑

r=0

(−i)rθ′r(J2 cos θ+J3 sin θ)r
1

r!
.

(237)
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We equate coefficients of the same powers of θ, θ′. In particular, the
terms of order θθ′ yield the result:

[J1, J2] = iJ3. (238)

We thus also have, for example:

[J1,JJJ
2] = [J1, J

2
1 + J2

2 + J2
3 ] (239)

= J1J2J2 − J2J2J1 + J1J3J3 − J3J3J1 (240)

= (iJ3 + J2J1)J2 − J2(−iJ3 + J1J2) + (241)

(−iJ2 + J3J1)J3 − J3(iJ2 + J1J3) (242)

= 0. (243)

As a consequence, we also have:

D(u)JJJ2D(u−1) = e−iθeee·JJJJJJ2eiθeee·JJJ = JJJ2. (244)

In particular, this is true for an irrep:

Dj(u)JJJ2Dj(u−1) = JJJ2. (245)

Therefore JJJ2 is a multiple of the identity (often referred to as a “casimir
operator”).

Let us determine the multiple. Take the trace:

Tr(JJJ2) = 3Tr(J2
3 ) (246)

= 3Tr





{
∂

∂θ
Dj [ueee3(θ)]

}2

θ=0



 (247)

= −3Tr

{
lim
∆→0
∆′→0

1

∆∆′

{ [
Dj (ueee3(θ + ∆)) −Dj (ueee3(θ))

]
(248)

[
Dj (ueee3

(θ + ∆′)) −Dj (ueee3
(θ))

] }}

θ=0

(249)

= −3Tr

{
lim
∆→0
∆′→0

1

∆∆′

{[
Dj (ueee3(∆ + ∆′)) (250)

−Dj (ueee3(∆
′)) −Dj (ueee3(∆)) +Dj (ueee3(0))

]}}
(251)
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= −3Tr

{[
∂2

∂θ2
Dj [ueee3(θ)]

]

θ=0

}
(252)

= −3

{
∂2

∂θ2
χj [ueee3(θ)]

}

θ=0

. (253)

There are different ways to evaluate this. We could insert

χj [ueee3(θ)] =
sin(j + 1

2
)θ

sin 1
2
θ

, (254)

or we could use

χj [ueee3
(θ)] =

j∑

m=−j
eimθ. (255)

In either case, we find:

Tr(JJJ2) = j(j + 1)(2j + 1). (256)

Since dj = 2j + 1, this gives the familiar result:

JJJ2 = j(j + 1)I. (257)

Finally, we’ll compute the eigenvalues of eee ·JJJ = J(eee) =
∑j
m=−jmFm(eee).

We showed earlier that the Fm(eee) are one-dimensional projection oper-
ators, and it thus may readily be demonstrated that

J(eee)Fm(eee) = mFm(eee). (258)

Hence, the desired eigenvalues are m = {−j,−j + 1, . . . , j − 1, j}.

11 Standard Conventions

Let’s briefly summarize where we are. We’ll pick some “standard” conven-
tions towards building explicit representations for rotations in quantum me-
chanics.

• The rotation group in quantum mechanics is postulated to be SU(2),
with elements

u = ueee(θ) = e−
i
2
θeee·σσσ, (259)

describing a rotation by angle θ about vector eee, in the clockwise sense
as viewed along eee.
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• O+(3) is a two to one homomorphism of SU(2):

Rmn(u) =
1

2
Tr(u†σmuσn). (260)

• To every representation of SU(2) there corresponds a representation
of the Lie algrebra of SU(2) given by the real linear span of the three
matrices −iJk, k = 1, 2, 3, where

[Jm, Jn] = iεmnpJp. (261)

The vector operator JJJ is interpreted as angular momentum. Its square
is invariant under rotations.

• The matrix group SU(2) is a representation of the abstract group

SU(2), and this representation is denoted D
1
2 (u) = u. For this rep-

resentation, Jk = 1
2
σk.

• Every finite dimensional representation of SU(2) is equivalent to a
unitary representation, and every unitary irreducible representation of
SU(2) is finite dimensional. Therefore, the generating operators, Jk,
can always be chosen to be hermitian.

• Let 2j be a non-negative integer. To every 2j there corresponds a
unique irrep by unitary transformations on a 2j+1-dimensional carrier
space, which we denote

Dj = Dj(u). (262)

These representations are constructed according to conventions which
we take to define the “standard representations”:
The matrices Jk are hermitian and constructed according to the follow-
ing: Let |j,m〉, m = −j,−j +1, . . . , j− 1, j be a complete orthonormal
basis in the carrier space such that:

JJJ2|j,m〉 = j(j + 1)|j,m〉 (263)

J3|j,m〉 = m|j,m〉 (264)

J+|j,m〉 =
√

(j −m)(j +m + 1)|j,m + 1〉 (265)

J−|j,m〉 =
√

(j +m)(j −m + 1)|j,m− 1〉, (266)
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where
J± ≡ J1 ± iJ2. (267)

According to convention, matrices J1 and J3 are real, and matrix J2 is
pure imaginary. The matrix

Dj [ueee(θ)] = exp(−iθeee · JJJ), (268)

describes a rotation by θ about unit vector eee.

• If j = 1
2
-integer, then Dj(u) are faithful representations of SU(2). If j

is an integer, then Dj(u) are representations of O+(3) (and are faithful
if j > 0). Also, if j is an integer, then the representation Dj(u) is
similar to a representation by real matrices:

Rmn(u) =
3

j(j + 1)(2j + 1)
Tr
[
Dj†(u)JmD

j(u)Jn
]
. (269)

• In the standard basis, the matrix elements of Dj(u) are denoted:

Dj
m1m2

(u) = 〈j,m1|Dj(u)|j,m2〉, (270)

and thus,

Dj(u)|j,m〉 =
j∑

m′=−j
Dj
m′m(u)|j,m′〉. (271)

Let |φ〉 be an element in the carrier space of Dj, and let |φ′〉 = Dj(u)|φ〉
be the result of applying rotation Dj(u) to |φ〉. We may expand these
vectors in the basis:

|φ〉 =
∑

m

φm|j,m〉 (272)

|φ′〉 =
∑

m

φ′
m|j,m〉. (273)

Then
φ′
m =

∑

m′
Dj
mm′(u)φm′. (274)

• Since matrices u and Dj(u) are unitary,

Dj
m1m2

(u−1) = Dj
m1m2

(u†) = D∗j
m2m1

(u). (275)
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• The representation Dj is the symmetrized (2j)-fold tensor product of

the representation D
1
2 = SU(2) with itself. For the standard repre-

sentation, this is expressed by an explicit formula for matrix elements
Dj
m1m2

(u) as polynomials of degree 2j in the matrix elements of SU(2):
Define the quantities Dj

m1m2
(u) for m1, m2 = −j, . . . , j by:

〈λ∗|u|η〉2j = (λ1u11η1 + λ1u12η2 + λ2u21η1 + λ2u22η2)
2j (276)

= (2j)!
∑

m1,m2

(277)

λj+m1
1 λj−m1

2 ηj+m2
1 ηj−m2

2√
(j +m1)!(j −m1)!(j +m2)!(j −m2)!

Dj
m1m2

(u).

We defer to later the demonstration that the matrix elements Dj
m1m2

(u)
so defined are identical with the earlier definition for the standard rep-
resentation. A consequence of this formula (which the reader is encour-
aged to demonstrate) is that, in the standard representation,

Dj(u∗) = D∗j(u) (278)

Dj(uT ) = DjT (u). (279)

Also, noting that u∗ = σ2uσ2, we obtain

D∗j(u) = exp(−iπJ2)D
j(u) exp(iπJ2), (280)

making explicit our earlier statement that the congugate representation
was equivalent in SU(2) [We remark that this property does not hold
for SU(n), if n > 2].

• We can also describe the standard representation in terms of an ac-
tion of the rotation group on homogeneous polynomials of degree 2j
of complex variables x and y. We define, for each j = 0, 1

2
, 1, . . ., and

m = −j, . . . , j the polynomial:

Pjm(x, y) ≡ xj+myj−m√
(j +m)!(j −m)!

; P00 ≡ 1. (281)

We also define Pjm ≡ 0 if m /∈ {−j, . . . , j}. In addition, define the
differential operators Jk, k = 1, 2, 3, J+, J−:

J3 =
1

2
(x∂x − y∂y) (282)
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J1 =
1

2
(x∂y + y∂x) =

1

2
(J+ + J−) (283)

J2 =
i

2
(y∂x − x∂y) =

i

2
(J− − J+) (284)

J+ = x∂y = J1 + iJ2 (285)

J− = y∂x = J1 − iJ2 (286)

These definitions give

JJJ2 =
1

4

[
(x∂x − y∂y)

2 + 2(x∂x + y∂y)
]
. (287)

We let these operators act on our polynomials:

J3Pjm(x, y) =
[
1

2
(x∂x − y∂y)

]
xj+myj−m√

(j +m)!(j −m)!
(288)

=
1

2
[j +m− (j −m)]Pjm(x, y) (289)

= mPjm(x, y). (290)

Similarly,

J+Pjm(x, y) = (x∂y)
xj+myj−m√

(j +m)!(j −m)!
(291)

= (j −m)
xj+m+1yj−m−1

√
(j +m)!(j −m)!

(292)

= (j −m)

√√√√(j +m+ 1)!(j −m− 1)!

(j +m)!(j −m)!
Pj,m+1(x, y)

=
√

(j −m)(j +m+ 1)Pj,m+1(x, y). (293)

Likewise,

J−Pjm(x, y) =
√

(j +m)(j −m + 1)Pj,m−1(x, y), (294)

and
JJJ2Pjm(x, y) = j(j + 1)Pjm(x, y). (295)

We see that the actions of these differential operators on the monomials,
Pjm, are according to the standard representation of the Lie algebra of

47



the rotation group (that is, we compare with the actions of the standard
representation for JJJ on orthonormal basis |j,m〉).
Thus, regarding Pjm(x, y) as our basis, a rotation corresponds to:

Dj(u)Pjm(x, y) =
∑

m′
Dj
m′m(u)Pjm′(x, y). (296)

Now,

D
1
2 (u)P 1

2
m(x, y) =

∑

m′
D

1
2
m′m(u)P 1

2
m′(x, y) (297)

=
∑

m′
um′m(u)P 1

2
m′(x, y). (298)

Or,
uP 1

2
m(x, y) = u 1

2
mP 1

2
1
2
(x, y) + u− 1

2
mP 1

2
− 1

2
(x, y). (299)

With P 1
2

1
2
(x, y) = x, and P 1

2
− 1

2
(x, y) = y, we thus have (using normal

matrix indices now on u)

uP 1
2

1
2
(x, y) = u11x+ u21y, (300)

uP 1
2
− 1

2
(x, y) = u12x+ u22y. (301)

Hence,

Dj(u)Pjm(x, y) = Pjm(u11x + u21y, u12x + u22y) (302)

=
∑

m′
Dj
m′m(u)Pjm′(x, y). (303)

Any homogeneous polynomial of degree 2j in (x, y) can be written as a
unique linear combination of the monomials Pjm(x, y). Therefore, the
set of all such polynomials forms a vector space of dimension 2j + 1,
and carries the standard representation Dj of the rotation group if the
action of the group elements on the basis vectors Pjm is as above. Note
that

Pjm(∂x, ∂y)Pjm′(x, y) =
∂j+mx ∂j−my xj+m

′
yj−m

′

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

= δmm′ . (304)

48



Apply this to

Pjm(u11x + u21y, u12x + u22y) =
∑

m′
D

1
2
m′m(u)P 1

2
m′(x, y) : (305)

Pjm(∂x, ∂y)
∑

m′′
D

1
2
m′′m′(u)P 1

2
m′′(x, y) = Dj

mm′(u). (306)

Hence,

Dj
mm′(u) = Pjm(∂x, ∂y)Pjm′(u11x+ u21y, u12x+ u22y), (307)

and we see that Dj
mm′(u) is a homogeneous polynomial of degree 2j in

the matrix elements of u.

Now,

j∑

m=−j
Pjm(x1, y1)Pjm(x2, y2) =

j∑

m=−j

(x1x2)
j+m(y1 + y2)

j−m

(j +m)!(j −m)!
. (308)

Using the binomial theorem, we can write:

(x1x2 + y1y2)
2j

(2j)!
=

j∑

m=−j

(x1x2)
j+m(y1 + y2)

j−m

(j +m)!(j −m)!
. (309)

Thus,
j∑

m=−j
Pjm(x1, y1)Pjm(x2, y2) =

(x1x2 + y1y2)
2j

(2j)!
. (310)

One final step remains to get our asserted equation defining the Dj(u)
standard representation in terms of u:

∑

m1,m2

λj+m1
1 λj−m1

2 ηj+m2
1 ηj−m2

2√
(j +m1)!(j −m1)!(j +m2)!(j −m2)!

Dj
m1m2

(u) (311)

=
∑

m1,m2

Pjm1(λ1, λ2)D
j
m1m2

(u)Pjm2(η1, η2) (312)

=
∑

m2

Pjm2(u11λ1 + u21λ2, u12λ1 + u22λ2)Pjm2(η1, η2) (313)

=
1

(2j)!
(λ1u11η1 + λ1u12η2 + λ2u21η1 + λ2u22η2)

2j. (314)

The step in obtaining Eqn. 313 follows from Eqn. 303, or it can be
demonstrated by an explicit computation. Thus, we have now demon-
strated our earlier formula, Eqn. 277, for the standard representation
for Dj.
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12 “Special” Cases

We have obtained a general expression for the rotation matrices for an irrep.
Let us consider some “special cases”, and derive some more directly useful
formulas for the matrix elements of the rotation matrices.

1. Consider, in the standard representation, a rotation by angle π about
the coordinate axes. Let ρ1 = exp(−iπσ1/2) = −iσ1. Using

Dj
mm′(u) = Pjm(∂x, ∂y)Pjm′(u11x+ u21y, u12x+ u22y), (315)

we find:

Dj
mm′(ρ1) = Pjm(∂x, ∂y)Pjm′(−iy,−ix), (316)

= Pjm(∂x, ∂y)(−)jPjm′(x, y), (317)

= e−iπjδmm′ . (318)

Hence,
exp(−iπJ1)|j,m〉 = e−iπj|j,−m〉. (319)

Likewise, we define

ρ2 = exp(−iπσ2/2) = −iσ2, (320)

ρ3 = exp(−iπσ3/2) = −iσ3, (321)

which have the properties:

ρ1ρ2 = −ρ2ρ1 = ρ3, (322)

ρ2ρ3 = −ρ3ρ2 = ρ1, (323)

ρ3ρ1 = −ρ1ρ3 = ρ2, (324)

and hence,
Dj(ρ2) = Dj(ρ3)D

j(ρ1). (325)

In the standard representation, we already know that

exp(−iπJ3)|j,m〉 = e−iπm|j,m〉. (326)

Therefore,

exp(−iπJ2)|j,m〉 = exp(−iπJ3) exp(−iπJ1)|j,m〉 (327)

= exp(−iπJ3) exp(−iπj)|j,−m〉 (328)

= exp(−iπ(j −m))|j,−m〉. (329)
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2. Consider the parameterization by Euler angles ψ, θ, φ:

u = eψJ3eθJ2eφJ3 , (330)

(here Jk = − i
2
σk) or,

Dj(u) = Dj(ψ, θ, φ) = e−iψJ3e−iθJ2e−iφJ3, (331)

where it is sufficient (for all elements of SU(2)) to choose the range of
parameters:

0 ≤ ψ < 2π, (332)

0 ≤ θ ≤ π, (333)

0 ≤ φ < 4π (or 2π, if j is integral). (334)

We define the functions

Dj
m1m2

(ψ, θ, φ) = e−i(m1ψ+m2φ)djm1m2
(θ) = 〈j,m1|Dj(u)|j,m2〉, (335)

where we have introduced the real functions djm1m2
(θ) given by:

djm1m2
(θ) ≡ Dj

m1m2
(0, θ, 0) = 〈j,m1|e−iθJ2|j,m2〉. (336)

The “big-D” and “little-d” functions are useful in solving quantum
mechanics problems involving angular momentum. The little-d func-
tions may be found tabulated in various tables, although we have built
enough tools to compute them ourselves, as we shall shortly demon-
strate. Note that the little-d functions are real.

Here are some properties of the little-d functions, which the reader is
encouraged to prove:

djm1m2
(θ) = dj∗m1m2

(θ) (337)

= (−)m1−m2djm2m1
(θ) (338)

= (−)m1−m2dj−m1,−m2
(θ) (339)

djm1m2
(π − θ) = (−)j−m2dj−m1m2

(θ) (340)

= (−)j+m1djm1,−m2
(θ) (341)

djm1m2
(−θ) = djm2m1

(θ) (342)

djm1m2
(2π + θ) = (−)2jdjm1m2

(θ). (343)
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The dj functions are homogeneous polynomials of degree 2j in cos(θ/2)
and sin(θ/2). Note that slightly different conventions from those here
are sometimes used for the big-D and little-d functions.

The Dj
m1m2

(u) functions form a complete and essentially orthonormal
basis of the space of square integrable functions on SU(2):

∫

SU(2)
d(u)D∗j

m1m2
(u)Dj′

m′
1m

′
2
(u) =

δjj′δm1m′
1
δm2m′

2

2j + 1
. (344)

In terms of the Euler angles, d(u) = 1
16π2dψ sin θdθdφ, and

δjj′

2j + 1
=

1

16π2

∫ 2π

0
dψ

∫ π

0
sin θdθ

∫ 4π

0
dφ (345)

ei(m1ψ+m2φ)e−i(m1ψ+m2φ)djm1m2
(θ)dj

′

m1m2
(θ) (346)

=
1

2

∫ π

0
sin θdθdjm1m2

(θ)dj
′

m1m2
(θ). (347)

3. Spherical harmonics and Legendre polynomials: The Y`m functions are
special cases of the Dj. Hence we may define:

Y`m(θ, ψ) ≡
√

2`+ 1

4π
D∗`
m0(ψ, θ, 0), (348)

where ` is an integer, and m ∈ {−`,−`+ 1, . . . , `}.
This is equivalent to the standard definition, where the Y`m’s are con-
structed to transform under rotations like |`m〉 basis vectors, and where

Y`0(θ, 0) =

√
2`+ 1

4π
P`(cos θ). (349)

According to our definition,

Y`0(θ, 0) =

√
2`+ 1

4π
D∗`

00(0, θ, 0) =

√
2`+ 1

4π
d`00(θ). (350)

Thus, we need to show that d`00(θ) = P`(cos θ). This may be done by
comparing the generating function for the Legendre polynomials:

∞∑

`=0

t`P`(x) = 1/
√

1 − 2tx + t2, (351)
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with the generating function for d00(θ), obtained from considering the
generating function for the characters of the irreps of SU(2):

∑

j

χj(u)z
2j = 1/(1 − 2τz + z2), (352)

where τ = Tr(u/2). We haven’t discussed this generating function, and
we leave it to the reader to pursue this demonstration further.

The other aspect of our assertion of equivalence requiring proof con-
cerns the behavior of our spherical harmonics under rotations. Writing
Y`m(eee) = Y`m(θ, ψ), where θ, ψ are the polar angles of unit vector eee, we
can express our definition in the form:

Y`m[R(u)eee3] =

√
2`+ 1

4π
D`

0m(u−1), (353)

since,

Y`m[R(u)eee3] = Y`m(eee) = Y`m(θ, ψ) (354)

=

√
2`+ 1

4π
D`
m0(ψ, θ, 0) (355)

=

√
2`+ 1

4π
〈j,m|D`(u)|j, 0〉∗ (356)

=

√
2`+ 1

4π
〈D`(u)(j, 0)||j,m〉 (357)

=

√
2`+ 1

4π
〈j, 0|D†`(u)|j,m〉. (358)

To any u0 ∈ SU(2) corresponds R̂(uo) on any function f(eee) on the unit
sphere as follows:

R̂(uo)f(eee) = f
[
R−1(u0)eee

]
. (359)

Thus,

R̂(uo)Y`m(eee) = Y`m
[
R−1(u0)eee

]
(360)

= Y`m
[
R−1(u0)R(u)eee3

]
(361)
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= Y`m
[
R(u−1

0 u)eee3

]
(362)

=

√
2`+ 1

4π
D`

0m(u−1u0) (363)

=

√
2`+ 1

4π

∑

m′
D`

0m′(u−1)D`
m′m(u0) (364)

=
∑

m′
D`
m′m(u0)Y`m′(eee). (365)

This shows that the Y`m transform under rotations according to the
|`,m〉 basis vectors.

We immediately have the following properties:

(a) If JJJ = −ixxx ×∇ is the angular momentum operator, then

J3Y`m(eee) = mY`m(eee) (366)

JJJ2Y`m(eee) = `(`+ 1)Y`m(eee). (367)

(b) From th D∗D orthogonality relation, we further have:
∫ 2π

0
dψ

∫ π

0
dθ sin θY ∗

`m(θ, ψ)Y`′m′(θ, ψ) = δmm′δ``′. (368)

The Y`m(θ, ψ) form a complete orthonormal set in the space of
square-integrable functions on the unit sphere.

We give a proof of completeness here: If f(θ, ψ) is square-integrable,
and if

∫ 2π

0
dψ

∫ π

0
dθ sin θf(θ, ψ)Y ∗

`m(θ, ψ) = 0, ∀(`,m), (369)

we must show that this means that the integral of |f |2 vanishes.
This follows from the completeness of Dj(u) on SU(2): Extend
the domain of definition of f to F (u) = F (ψ, θ, φ) = f(θ, ψ), ∀u ∈
SU(2). Then,

∫

SU(2)
d(u)F (u)Dj

mm′(u) =





0 if m′ = 0, by assumption
0 if m′ 6= 0 since F (u) is independent

of φ, and
∫ 4π
0 dφe−im

′φ = 0.
(370)

Hence,
∫
SU(2) d(u)|F (u)|2 = 0 by the completeness of Dj(u), and

therefore
∫
(4π) dΩ|f |2 = 0.
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(c) We recall that Y`0(θ, 0) =
√

2`+1
4π

P`(cos θ). With

R(uo)Y`m(eee) = Y`m
[
R−1(u0)eee

]
=
∑

m′
D`
m′m(u0)Y`m′(eee), (371)

we have, for m = 0,

R(uo)Y`0(eee) = Y`0
[
R−1(u0)eee

]
=
∑

m′
D`
m′0(u0)Y`m′(eee) (372)

=

√
4π

2`+ 1

∑

m′
Y ∗
`m′(eee′)Y`m′(eee), (373)

where we have defined R(u0)eee3 = eee′. But

eee · eee′ = eee · [R(u0)eee3 = [R−1(u0)eee] · eee3, (374)

and

Y`0[R
−1(u0)eee] = function of θ[R−1(u0)eee] only, (375)

=

√
2`+ 1

4π
P`(cos θ), (376)

where cos θ = eee · eee′. Thus, we have the “addition theorem” for
spherical harmonics:

P`(eee · eee′) =
4π

2`+ 1

∑

m

Y ∗
`m(eee′)Y`m(eee). (377)

(d) In momentum space, we can therefore write

δ(3)(ppp − qqq) =
δ(p− q)

4πpq

∞∑

`=0

(2`+ 1)P`(cos θ) (378)

=
δ(p− q)

4πpq

∞∑

`=0

∑̀

m=−`
Y`m(θp, ψp)Y

∗
`m(θq, ψq),(379)

where p = |ppp|, and θ is the angle between ppp and qqq.

(e) Let us see now how we may compute the dj(θ) functions. Recall

Dj
mm′(u) = Pjm(∂x, ∂y)Pjm′(u11x+ u21y, u12x+ u22y). (380)
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With

u(0, θ, 0) = e−i
θ
2
σ2 = cos

θ

2
I − i sin

θ

2
σ2 (381)

=
(

cos θ
2

− sin θ
2

sin θ
2

cos θ
2

)
, (382)

we have:

djmm′(θ) = Dj
mm′(0, θ, 0) (383)

= Pjm(∂x, ∂y)Pjm′(x cos
θ

2
+ y sin

θ

2
,−x sin

θ

2
+ y cos

θ

2
) (384)

=
∂j+mx ∂j−my (x cos θ

2
+ y sin θ

2
)j+m

′
(−x sin θ

2
+ y cos θ

2
)j−m

′

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

.(385)

Thus, we have an explicit means to compute the little-d functions.
An alternate equation, which is left to the reader to derive (again
using the Pjm functions), is

djmm′(θ) =
1

2π

√√√√ (j +m)!(j −m)!

(j +m′)!(j −m′)!
(386)

×
∫ 2π

0
dαei(m−m′)α(cos

θ

2
+ eiα sin

θ

2
)j+m

′
(cos

θ

2
− e−iα sin

θ

2
)j−m

In tabulating the little-d functions it is standard to use the label-
ing:

dj =




djjj . . . djj,−j
...

. . .
...

dj−j,j . . . dj−j,−j


 . (387)

For example, we find:

d
1
2 (θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
, (388)

and

d1(θ) =




1
2
(1 + cos θ) − 1√

2
sin θ 1

2
(1 − cos θ)

1√
2
sin θ cos θ − 1√

2
sin θ

1
2
(1 − cos θ) 1√

2
sin θ 1

2
(1 + cos θ)


 . (389)
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13 Clebsch-Gordan (Vector Addition) Coef-

ficients

We consider the tensor (or Kronecker) product of two irreps, and its reduction
according to the Clebsch-Gordan series:

Dj1(u) ⊗Dj2(u) =
j1+j2∑

j=|j1−j2|
Dj(u). (390)

The carrier space of the representation Dj1⊗Dj2 is of dimension (2j1+1)(2j2+
1). It is the tensor product of the carrier spaces for the representations Dj1

and Dj2. Corresponding to the above reduction of the kronecker product, we
have a decomposition of the carrier space into orthogonal subspaces carrying
the representations Dj.

For each j we can select a standard basis system:

|j1j2; j,m〉 =
∑

m1,m2

C(j1j2j;m1m2m)|j1, m1; j2, m2〉, (391)

where the latter ket is just the tensor product of the standard basis vectors
|j1, m1〉 and |j2, m2〉. The coefficients C are the “vector-addition coefficients”,
or “Wigner coefficients”, or, more commonly now, “Clebsch-Gordan (CG)
coefficients”. These coefficients must be selected so that the unit vectors
|j1j2; j,m〉 transform under rotations according to the standard representa-
tion.

We notice that the CG coefficients relate two systems of orthonormal
basis vectors. Hence, they are matrix elements of a unitary matrix with rows
labeled by the (m1, m2) pair, and columns labeled by the (j,m) pair. Thus,
we have the orthonormality relations:

∑

m1,m2

C∗(j1j2j;m1m2m)C(j1j2j
′;m1m2m

′) = δjj′δmm′ , (392)

∑

j,m

C∗(j1j2j;m1m2m)C(j1j2j;m
′
1m

′
2m) = δm1m′

1
δm2m′

2
. (393)

The inverse basis transformation is:

|j1, m1; j2, m2〉 =
∑

j,m

C∗(j1j2j;m1m2m)|j1j2; j,m〉. (394)
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We wish to learn more about the CG coefficients, including how to com-
pute them in general. Towards accomplishing this, evaluate the matrix ele-
ments of the Clebsch-Gordan series, with

Dj1
m′

1m
′′
1
(u) = 〈j1, m′

1|Dj1(u)|j1, m′′
1〉, (395)

etc. Thus we obtain the explicit reduction formula for the matrices of the
standard representations:

Dj1
m′

1m
′′
1
(u)Dj2

m′
2m

′′
2
(u) = 〈j1, m′

1; j2, m
′
2|
∑

j

Dj(u)|j1, m′′
1; j2, m

′′
2〉 (396)

=
∑

j

∑

m′
C(j1j2j;m

′
1m

′
2m

′)〈j1j2; j,m′|Dj(u)
∑

m′′
C∗(j1j2j;m

′′
1m

′′
2m

′′)|j1j2; j,m′′〉

=
∑

j,m′,m′′
C(j1j2j;m

′
1m

′
2m

′)C∗(j1j2j;m
′′
1m

′′
2m

′′)Dj
m′m′′(u). (397)

Next, we take this equation, multiply by D∗j
m′m′′(u), integrate over SU(2),

and use orthogonality to obtain:

C(j1j2j;m
′
1m

′
2m

′)C∗(j1j2j;m
′′
1m

′′
2m

′′) = (2j+1)
∫

SU(2)
d(u)D∗j

m′m′′(u)D
j1
m′

1m
′′
1
(u)Dj2

m′
2m

′′
2
(u).

(398)
Thus, the CG coefficients for the standard representations are determined by
the matrices in the standard representations, except for a phase factor which
depends on (j1j2j) [but not on (m1m2m)].

The coefficients vanish unless:

1. j ∈ {|j1−j2|, |j1−j2|+1, . . . , j1+j2} (from the Clebsch-Gordan series).

2. m = m1 +m2 (as will be seen anon).

3. m ∈ {−j,−j+1, . . . , j}, m1 ∈ {−j1,−j1 +1, . . . , j1}, m2 ∈ {−j2,−j2 +
1, . . . , j2} (by convention).

Consider the Euler angle parameterization for the matrix elements, giv-
ing:

C(j1j2j;m
′
1m

′
2m

′)C∗(j1j2j;m
′′
1m

′′
2m

′′)

= (2j + 1)
1

16π2

∫ 2π

0
dψ

∫ 4π

0
dφ
∫ π

0
sin θdθ (399)

exp {−i [(−m′ +m′
1 +m′

2)ψ + (−m′′ +m′′
1 +m′′

2)φ]} djm′m′′(θ)d
j1
m′

1m
′′
1
(θ)dj2m′

2m
′′
2
(θ).
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We see that this is zero unless m′ = m′
1 +m′

2 and m′′ = m′′
1 +m′′

2, verifying
the above assertion. Hence, we have:

C(j1j2j;m
′
1m

′
2m

′)C∗(j1j2j;m
′′
1m

′′
2m

′′) (400)

=
(2j + 1)

2

∫ π

0
sin θdθdjm′m′′(θ)d

j1
m′

1m
′′
1
(θ)dj2m′

2m
′′
2
(θ).

Now, to put things in a more symmetric form, let m′
3 = −m′, m′′

3 = −m′′,
and use

dj3−m′
3,−m

′′
3
(θ) = (−)m

′
3−m′′

3dj3m′
3,m

′′
3
(θ), (401)

to obtain the result:

2

2j + 1
(−)m

′
3−m′′

3C(j1j2j3;m
′
1m

′
2,−m′

3)C
∗(j1j2j3;m

′′
1m

′′
2,−m′′

3) (402)

=
∫ π

0
sin θdθdj1m′

1m
′′
1
(θ)dj2m′

2m
′′
2
(θ)dj3m′

3m
′′
3
(θ).

The d-functions are real. Thus, we can choose our arbitrary phase in C for
given j1j2j3 so that at least one non-zero coefficient is real. Then, according
to this formula, all coefficients for given j1j2j3 will be real. We therefore
adopt the convention that all CG coefficients are real.

The right-hand side of Eqn. 402 is highly symmetric. Thus, it is useful
to define the “3-j” symbol (Wigner):

(
j1 j2 j3
m1 m2 m3

)
≡ (−)j1−j2−m3C(j1j2j3;m1m2,−m3)√

2j3 + 1
. (403)

In terms of these 3-j symbols we have:

(
j1 j2 j3
m′

1 m′
2 m′

3

)(
j1 j2 j3
m′′

1 m′′
2 m′′

3

)
(404)

=
1

2

∫ π

0
sin θdθ(θ)dj1m′

1m
′′
1
(θ)dj2m′

2m
′′
2
(θ)dj3m′

3m
′′
3
(θ),

for m′
1 +m′

2 +m′
3 = m′′

1 +m′′
2 +m′′

3 = 0.
According to the symmetry of the right hand side, we see, for example,

that the square of the 3-j symbol is invariant under permutations of the
columns. Furthermore, since

djm′m′′(π − θ) = (−)j−m
′′
dj−m′m′′(θ), (405)
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we find that
(
j1 j2 j3
m1 m2 m3

)
= (−)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (406)

It is interesting to consider the question of which irreps occur in the
symmetric, and in the anti-symmetric, tensor products of Dj with itself:

Theorem:

[
Dj(u) ⊗Dj(u)

]
s

=
[j]∑

n=0

D2j−2n(u), (407)

[
Dj(u) ⊗Dj(u)

]
a

=

[j− 1
2
]∑

n=0

D2j−2n−1(u), (408)

where s denotes the symmetric tensor product, a denotes the anti-
symmetric tensor product, and [j] means the greatest integer which is
not larger than j.

Proof: We prove this by considering the characters. Let S(u) ≡ [Dj(u) ⊗Dj(u)]s,
and A(u) ≡ [Dj(u) ⊗Dj(u)]a. Then, by definition,

S(m′
1m

′
2)(m′′

1m
′′
2 ) =

1

2

(
Dj
m′

1m
′′
1
Dj
m′

2m
′′
2

+Dj
m′

1m
′′
2
Dj
m′

2m
′′
1

)
, (409)

A(m′
1m

′
2)(m′′

1m
′′
2 ) =

1

2

(
Dj
m′

1m
′′
1
Dj
m′

2m
′′
2
−Dj

m′
1m

′′
2
Dj
m′

2m
′′
1

)
. (410)

(411)

Taking the traces means to set m′
1 = m′′

1 and m′
2 = m′′

2, and sum over
m′

1 and m′
2. This yields

TrS(u) =
1

2
[χ2
j(u) + χj(u

2)] (412)

TrA(u) =
1

2
[χ2
j(u) − χj(u

2)]. (413)

We need to evaluate χj(u
2). If u is a rotation by θ, then u2 is a rotation

by 2θ, hence,

χj(u
2) =

j∑

m=−j
e−2imθ (414)
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=
2j∑

k=−2j

e−ikθ −
2j−1∑

k=−2j+1

e−ikθ +
2j−2∑

k=−2j+2

e−ikθ − . . . (415)

=
2j∑

n=0

(−)n
2j−n∑

k=−2j+n

e−ikθ (416)

=
2j∑

n=0

(−)nχ2j−n(u). (417)

Next, consider χ2
j(u). Since

χj′(u)χj′′(u) =
j′+j′′∑

j=|j′−j′′|
χj(u), (418)

we have

χ2
j(u) =

2j∑

k=0

χk(u) =
2j∑

n=0

χ2j−n(u). (419)

Thus,

TrS(u) =
1

2

2j∑

n=0

[χ2j−n(u) + (−)nχ2j−n(u)] (420)

=
[j]∑

n=0

χ2j−2n(u). (421)

Similarly, we obtain:

TrA(u) =

[j− 1
2
]∑

n=0

χ2j−2n−1(u). (422)

This completes the proof.

This theorem implies an important symmetry relation for the CG coeffi-
cients when two j’s are equal. From Eqn. 398, we obtain

C(j1j1j;m
′
1m

′
2m

′)C(j1j1j;m
′′
1m

′′
2m

′′) = (2j+1)
∫

SU(2)
d(u)D∗j

m′m′′(u)D
j1
m′

1m
′′
1
(u)Dj1

m′
2m

′′
2
(u).

(423)
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But

Dj1
m′

1m
′′
1
(u)Dj1

m′
2m

′′
2
(u) = S(m′

1m
′
2)(m′′

1m
′′
2 )(u) + A(m′

1m
′
2)(m′′

1m
′′
2 )(u), (424)

and the integral of this with D∗j(u) picks the Dj piece of this quantity,
which must be either m′

1 ↔ m′
2 symmetric or anti-symmetric, according to

the theorem we have just proven. If symmetric, then

C(j1j1j;m
′
2m

′
1m

′) = C(j1j1j;m
′
1m

′
2m

′), (425)

and if anti-symmetric, then

C(j1j1j;m
′
2m

′
1m

′) = −C(j1j1j;m
′
1m

′
2m

′). (426)

Let’s try a simple example: Let j1 = j2 = 1
2
. That is, we wish to

combine two spin-1/2 systems (with zero orbital angular momentum). From
the theorem:

(
D

1
2 ⊗D

1
2

)
s

=
[1/2]∑

n=0

D1−2n = D1, (427)

(
D

1
2 ⊗D

1
2

)
a

=
[0]∑

n=0

D1−2n−1 = D0. (428)

Hence, the spin-1 combination is symmetric, with basis

|j = 1, m = 1;m1 = 1
2
, m2 = 1

2
〉, (429)

1√
2

(
|1, 0; 1

2
,−1

2
〉 + |1, 0;−1

2
, 1

2
〉
)
, (430)

|1,−1;−1
2
,−1

2
〉, (431)

and the spin-0 combination is antisymmetric:

1√
2

(
|0, 0; 1

2
,−1

2
〉 − |0, 0;−1

2
, 1

2
〉
)
. (432)

The generalization of this example is that the symmetric combinations
are j = 2j1, 2j1 − 2, . . ., and the antisymmetric combinations are j = 2j1 −
1, 2j1 − 3, . . . Therefore,

C(j1j1j;m
′
2m

′
1m

′) = (−)2j1+jC(j1j1j;m
′
1m

′
2m

′). (433)
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Also, (
j j J
m1 m2 M

)
= (−)2j+J

(
j j J
m2 m1 M

)
, (434)

as well as the corresponding column permutations, e.g.,

(
j J j
m1 M m2

)
= (−)2j+J

(
j J J
m2 M m1

)
, (435)

We adopt a “standard construction” of the 3-j and CG coefficients: First,
they are selected to be real. Second, for any triplet j1j2j the 3-j symbols
are then uniquely determined, except for an overall sign which depends on
j1j2j only. By convention, we pick (this is a convention when j1, j2, j3 are all
different, otherwise it is required):

(
j1 j2 j3
m1 m2 m3

)
=
(
j2 j3 j1
m2 m3 m1

)
= (−)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
.

(436)
That is, the 3-j symbol is chosen to be symmetric under cyclic permutation
of the columns, and either symmetric or anti-symmetric, depending on j1 +
j2 + j3, under anti-cyclic permutations.

Sometimes the symmetry properties are all we need, e.g., to determine
whether some process is permitted or not by angular momentum conserva-
tion. However, we often need to know the CG (or 3-j) coefficients themselves.
These are tabulated in many places. We can also compute them ourselves,
and we now develop a general formula for doing this. We can take the fol-
lowing as the defining relation for the 3-j symbols, i.e., it can be shown to
be consistent with all of the above constraints:

G({k}; {x}, {y}) ≡ (x1y2 − x2y1)
2k3(x2y3 − x3y2)

2k1(x3y1 − x1y3)
2k2

√
(2k3)!(2k1)!(2k2)!(j1 + j2 + j3 + 1)!

≡
∑

m1m2m3

(
j1 j2 j3
m1 m2 m3

)
Pj1m1(x1, y1)Pj2m2(x2, y2)Pj3m3(x3, y3), (437)

where 2k1, 2k2, 2k3 are non-negative integers given by:

2k3 = j1 + j2 − j3; 2k1 = j2 + j3 − j1; 2k2 = j3 + j1 − j2. (438)

We’ll skip the proof of this consistency here. The interested reader may
wish to look at T.Regge, Il Nuovo Cimento X (1958) 296; V. Bargmann, Rev.
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Mod. Phys. 34 (1962) 829. Since Pjm(∂x, ∂y)Pjm′(x, y) = δmm′ , we obtain
the explicit formula:
(
j1 j2 j3
m1 m2 m3

)
= Pj1m1(∂x1 , ∂y1)Pj2m2(∂x2 , ∂y2)Pj3m3(∂x3 , ∂y3)G({k}; {x}, {y}).

(439)
For example consider the special case in which j3 = j1 + j2 (and m3 =

−(m1 +m2)). In this case, k3 = 0, k1 = j2, and k2 = j1. Thus,
(
j1 j2 j1 + j2
m1 m2 −m1 −m2

)
(440)

=
∂j1+m1
x1

∂j1−m1
y1

∂j2+m2
x2

∂j2−m2
y2

∂j1+j2−m1−m2
x3

∂j1+j2+m1+m2
y3√

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j1 + j2 −m1 −m2)!(j1 + j2 +m1 +m2)!

×(x2y3 − x3y2)
2j2(x3y1 − x1y3)

2j1

√
(2j2)!(2j1)!(2j1 + 2j2 + 1)!

(441)

= (−)j1+j2+m1−m2

√√√√ (2j1)!(2j2)!(j1 + j2 −m1 −m2)!(j1 + j2 +m1 +m2)!

(2j1 + 2j2 + 1)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!
. (442)

For j1 = j3 = j, j2 = 0, we find

(
j 0 j
m 0 −m

)
=

(−)j+m√
2j + 1

. (443)

We may easily derive the corresponding formulas for the CG coefficients.
In constructing tables of coefficients, much computation can be saved by
using symmetry relations and orthogonality of states. For example, we have
really already computed the table for the 1

2
⊗ 1

2
= 1 ⊕ 0 case:

C(1
2

1
2
j;m1m2m)

j 1 1 0 1

m1 m2 m 1 0 0 -1

1
2

1
2

1

1
2

−1
2

1/
√

2 1/
√

2

−1
2

1
2

1/
√

2 −1/
√

2

−1
2

−1
2

1
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For 1
2
⊗ 1 = 1

2
⊕ 3

2
we find:

C(11
2
j;m1m2m)

j 3
2

3
2

1
2

3
2

1
2

3
2

m1 m2 m 3
2

1
2

1
2

−1
2

−1
2

−3
2

1 1
2

1

1 −1
2

1/
√

3
√

2/3

0 1
2

√
2/3 −1/

√
3

0 −1
2

√
2/3 1/

√
3

-1 1
2

1/
√

3 −
√

2/3

-1 −1
2

1
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14 Wigner-Eckart Theorem

Consider a complex vector space Hop of operators on H which is closed
under U(u)QU−1(u), where Q ∈ Hop, and U(u) is a continuous unitary
representation of SU(2). We denote the action of an element of the group
SU(2) on Q ∈ Hop by

Û(u)Q = U(u)QU−1(u). (444)

Corresponding to this action of the group elements, we have the action
of the Lie algebra of SU(2):

ĴkQ = [Jk, Q]. (445)

We have obtained this result by noting that, picking a rotation about the k
axis, with U(u) = exp(−iθJk),

U(u)QU−1(u) = (1 − iθJk)Q(1 + iθJk) +O(θ2) (446)

= Q− iθ[Jk, Q] +O(θ2), (447)

and comparing with

Û(u)Q = exp(−iθĴk)Q = Q− iθĴkQ +O(θ2). (448)

We may also compute the commutator:

[Ĵk, Ĵ`]Q = Ĵk[J`, Q] − Ĵ`[Jk, Q] (449)

= [Jk, [J`, Q]] − [J`, [Jk, Q]] (450)

= [[Jk, J`], Q] (451)

= [iεk`mJm, Q]. (452)

Hence,
[Ĵk, Ĵ`] = iεk`mĴm. (453)

Def: A set of operators Q(j,m), m = −j,−j+1, . . . , j consists of the 2j+1
components of a spherical tensor of rank j if:

1. Ĵ3Q(j,m) = [J3, Q(j,m)] = mQ(j,m).

2. Ĵ+Q(j,m) = [J+, Q(j,m)] =
√

(j −m)(j +m+ 1)Q(j,m + 1).
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3. Ĵ−Q(j,m) = [J−, Q(j,m)] =
√

(j +m)(j −m+ 1)Q(j,m− 1).

Equivalently,

ĴJJ
2
Q(j,m) =

3∑

k=1

(Ĵk)
2Q(j,m) (454)

=
3∑

k=1

[Jk, [Jk, Q(j,m)]] (455)

= j(j + 1)Q(j,m), (456)

and
U(u)Q(j,m)U−1(u) =

∑

m′
Dj
m′m(u)Q(j,m′). (457)

That is, the set of operators Q(j,m) forms a spherical tensor if they
transform under rotations like the basis vectors |jm〉 in the standard
representation.

For such an object, we conclude that the matrix elements of Q(j,m) must
depend on the m values in a particular way (letting k denote any “other”
quantum numbers describing our state in the situation):

〈(j ′m′)(k′)|Q(j,m)|(j ′′m′′)(k′′)〉 (458)

= “〈j ′m′|(|jm〉|j ′′m′′〉)〈j ′, k′||Qj||j ′′, k′′〉” (459)

= A(j, j ′, j ′′)C(jj ′′j ′;mm′′m′)〈j ′, k′||Qj||j ′′, k′′〉,(460)

where a common convention lets

A(j, j ′, j ′′) = (−)j+j
′−j′′/

√
2j ′ + 1. (461)

The symbol 〈j ′, k′||Qj||j ′′, k′′〉 is called the reduced matrix element of the
tensor Qj. Eqn. 460 is the statement of the “Wigner-Eckart theorem”.

Let us try some examples:

1. Scalar operator: In the case of a scalar operator, there is only one
component:

Q(j,m) = Q(0, 0). (462)

The Wigner-Eckart theorem reads

〈(j ′m′)(k′)|Q(0, 0)|(j ′′m′′)(k′′)〉 (463)

=
(−)j

′−j′′

√
2j ′ + 1

C(0j ′′j ′; 0m′′m′)〈j ′, k′||Q0||j ′′, k′′〉.(464)
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But

C(0j ′′j ′; 0m′′m′) = 〈j ′m′|(|00〉|j ′′m′′〉) (465)

= δj′j′′δm′m′′ , (466)

and hence,

〈(j ′m′)(k′)|Q(0, 0)|(j ′′m′′)(k′′)〉 = δj′j′′δm′m′′
〈j ′, k′||Q0||j ′′, k′′〉√

2j ′ + 1
. (467)

The presence of the kronecker deltas tells us that a scalar operator
cannot change the angular momentum of a system, i.e., the matrix
element of the operator between states of differing angular momenta is
zero.

2. Vector operator: For j = 1 the Wigner-Eckart theorem is:

〈(j ′m′)(k′)|Q(1, m)|(j ′′m′′)(k′′)〉 (468)

=
(−)1+j′−j′′

√
2j ′ + 1

C(1j ′′j ′;mm′′m′)〈j ′, k′||Q1||j ′′, k′′〉.(469)

Before pursuing this equation with an example, let’s consider the con-
struction of the tensor components of a vector operator. We are given,
say, the Cartesian components of the operator: QQQ = (Qx, Qy, Qz). We
wish to find the tensor components Q(1,−1), Q(1, 0), Q(1, 1) in terms
of these Cartesian components, in the standard representation. We
must have:

Ĵ3Q(j,m) = [J3, Q(j,m)] = mQ(j,m), (470)

Ĵ±Q(j,m) = [J±, Q(j,m)] =
√

(j ∓m)(j ±m+ 1)Q(j,m± 1).(471)

The Qx, Qy, Qz components of a vector operator obey the commutation
relations with angular momentum:

[Jk, Q`] = iεk`mQm. (472)

Thus, consistency with the desired relations is obtained if

Q(1, 1) = − 1√
2
(Qx + iQy) (473)

Q(1, 0) = Qz (474)

Q(1,−1) =
1√
2
(Qx − iQy). (475)
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These, then, are the components of a spherical tensor of rank 1, ex-
pressed in terms of Cartesian components.

Now let’s consider the case where QQQ=JJJ, that is, the case in which
our vector operator is the angular momentum operator. To evaluate
the reduced matrix element, we chose any convenient component, for
example, Q(1, 0) = Jz. Hence,

〈j ′m′(k′)|Jz|j ′′m′′(k′′)〉 = δj′j′′δm′m′′δk′k′′m
′′ (476)

=
〈j ′, k′||J ||j ′′, k′′〉√

2j ′ + 1
C(1j ′′j ′; 0m′′m′)(−)1+j′+j′′.(477)

We see that the reduced matrix element vanishes unless j ′ = j ′′ (and
k′ = k′′).

The relevant CG coefficients are given by

C(1j ′j ′; 0m′m′) =
√

2j ′ + 1(−)1−j′+m′
(

1 j ′ j ′

0 m′ −m′

)
, (478)

where
(

1 j ′ j ′

0 m′ −m′

)
(479)

= P10(∂x1 , ∂y1)Pj′m′(∂x2 , ∂y2)Pj′,−m′(∂x3, ∂y3)G({k}; {x}, {y})(480)

= (−)j
′−m′ 2m′

√
(2j ′ + 2)(2j ′ + 1)2j ′

, (481)

which the reader is invited to demonstrate (with straightforward, though
somewhat tedious, algebra). Therefore,

C(1j ′j ′; 0m′m′) = − m′
√
j ′(j ′ + 1)

. (482)

Inserting the CG coefficients into our expression for the reduced matrix
element, we find

〈j ′, k′||J ||j ′′, k′′〉√
2j ′ + 1

= δj′j′′δk′k′′
√
j ′(j ′ + 1). (483)
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We see that this expression behaves like
√
〈JJJ2〉. Plugging back into the

Wigner-Eckart theorem, we find:

〈(j ′m′)(k′)|Jm|(j ′′m′′)(k′′)〉 (484)

= δj′j′′δk′k′′
√
j ′(j ′ + 1)[−C(1j ′j ′;mm′′m′)], (485)

where Jm = J1, J0, J−1 denotes the tensor components of JJJ.

Consider, for example, J(1, 1) = − 1√
2
J+. The Wigner-Eckart theorem

now tells us that

〈(jm+ 1| − 1√
2
J+|(jm)〉 = − 1√

2

√
(j −m)(j +m + 1), (486)

=
√
j(j + 1)[−C(1jj; 1mm+ 1)].(487)

Thus, we have found an expression which may be employed to compute
some CG coefficients:

C(1jj; 1mm+ 1) =

√√√√(j −m)(j +m+ 1)

2j(j + 1)
. (488)

We see that the Wigner-Eckart theorem applied to J itself can be used
to determine CG coefficients.

15 Exercises

1. Prove the theorem we state in this note:

Theorem: The most general mapping x → x′ of R3 into itself, such
that the origin is mapped into the origin, and such that all dis-
tances are preserved, is a linear, real orthogonal transformation
Q:

x′ = Qx, where QTQ = I, and Q∗ = Q. (489)

Hence,
x′ · y′ = x · y ∀ points x,y ∈ R3. (490)

For such a mapping, either:
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(a) det(Q) = 1, Q is called a proper orthogonal transformation,
and is in fact a rotation. In this case,

xxx′ × yyy′ = (xxx× yyy)′ ∀ pointsxxx, yyy ∈ R3. (491)

or,

(b) det(Q) = −1, Q is called an improper orthogonal trans-
formation, and is the product of a reflection (parity) and a
rotation. In this case,

xxx′ × yyy′ = −(xxx× yyy)′ ∀ pointsxxx, yyy ∈ R3. (492)

The set of all orthogonal transformations forms a group (denoted
O(3)), and the set of all proper orthogonal transformations forms
a subgroup (O+(3) or SO(3) of O(3)), identical with the set of all
rotations.

[You may wish to make use of the following intuitive lemma: Let
eee′1, eee

′
2, eee

′
3 be any three mutually perpendicular unit vectors such that:

eee′3 = eee′1 × eee′2 (right-handed system). (493)

Then there exists a unique rotation Ruuu(θ) such that

eee′i = Ruuu(θ)eeei, i = 1, 2, 3. (494)

]

2. We stated the following generalization of the addition law for tangents:

Theorem: If Reee(θ) = Reee′′(θ
′′)Reee′(θ

′), and defining:

τττ = eee tan θ/2 (495)

τττ ′ = eee′ tan θ′/2 (496)

τττ ′′ = eee′′ tan θ′′/2, (497)

then:

τττ =
τττ ′ + τττ ′′ + τττ ′′ × τττ ′

1 − τττ ′ · τττ ′′ . (498)
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A simple way to prove this theorem is to use SU(2) to represent the
rotations, i.e., the rotation Reee(θ) is represented by the SU(2) matrix

exp
(
− i

2
θeee · σ

)
. You are asked to carry out this proof.

3. We made the assertion that if we had an element u ∈ SU(2) which
commuted with every element of the vector space of traceless 2 × 2
Hermitian matrices, then u must be a multiple of the identity (i.e.,
either u = I or u = −I). Let us demonstrate this, learning a little
more group theory along the way.

First, we note that if we have a matrix group, it is possible to generate
another matrix representation of the group by replacing each element
with another according to the mapping:

u → v (499)

where
v = SuS−1. (500)

and S is any chosen non-singular matrix.

(a) Show that if {u} is a matrix group, then {v|v = SuS−1; S a
non-singular matrix} is a representation of the group (i.e., the
mapping is 1 : 1 and the multiplication table is preserved under
the mapping). The representations {u} and {v} are considered to
be equivalent.

A group of unitary matrices is said to be reducible if there ex-
ists a mapping of the above form such that every element may
simultaneously be written in block-diagonal form:

M(g) =



A(g) 0 0

0 B(g) 0

0 0
. . .




∀g ∈ the group (A(g) and B(g) are sub-matrices).

(b) Show that SU(2) is not reducible (i.e., SU(2) is irreducible).

(c) Now prove the following useful lemma: A matrix which commutes
with every element of an irreducible matrix group is a multiple of
the identity matrix. [Hint: Let B be such a matrix commuting
with every element, and consider the eigenvector equation Bx =
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λx. Then consider the vector ux where u is any element of the
group, and x is the eigenvector corresponding to eigenvalue λ.]

(d) Finally, prove the assertion we stated at the beginning of this
problem.

4. We have discussed rotations using the language of group theory. Let us
look at a simple application of group theory in determining “selection
rules” implied by symmetry under the elements of the group (where
the group is a group of operations, such as rotations). The point is
that we can often predict much about the physics of a situation simply
by “symmetry” arguments, without resorting to a detailed solution.

Consider a positronium “atom”, i.e., the bound state of an electron and
a positron. The relevant binding interaction here is electromagnetism.
The electromagnetic interaction doesn’t depend on the orientation of
the system, that is, it is invariant with respect to rotations. It also
is invariant with respect to reflections. You may wish to convince
yourself of these statements by writing down an explicit Hamiltonian,
and verifying the invariance.

Thus, the Hamiltonian for positronium is invariant with respect to
the group O(3), and hence commutes with any element of this group.
Hence, angular momentum and parity are conserved, and the eigen-
states of energy are also eigenstates of parity and total angular mo-
mentum (J). In fact, the spin and orbital angular momentum degrees
of freedom are sufficiently decoupled that the total spin (S) and or-
bital angular momentum (L) are also good quantum numbers for the
energy eigenstates to an excellent approximation. The ground state
of positronium (“parapositronium”) is the 1S0 state in 2S+1LJ spectro-
scopic notation, where L = S means zero orbital angular momentum.
Note that the letter “S” in the spectroscopic notation is not the same
as the “S” referring to the total spin quantum number. Sorry about
the confusion, but it’s established tradition. . .

In the ground state, the positron and electron have no relative orbital
angular momentum, and their spins are anti-parallel. The first excited
state (“orthopositronium”) is the 3S1 state, in which the spins of the
positron and electron are now aligned parallel with each other. The
3S1 −1 S0 splitting is very small, and is analogous to the “hyperfine”
splitting in normal atoms.
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Positronium decays when the electron and positron annihilate to pro-
duce photons. The decay process is also electromagnetic, hence also
governed by a Hamiltonian which is invariant under O(3). As a conse-
quence of this symmetry, angular momentum and parity are conserved
in the decay.

(a) We said that parity was a good quantum number for positronium
states. To say just what the parity is, we need to anticipate a
result from the Dirac equation (sorry): The intrinsic parities of
the electron and positron are opposite. What is the parity of
parapositronium? Of orthopositronium?

(b) We wish to know whether positronium can decay into two photons.
Let us check parity conservation. What are the possible parities
of a state of two photons, in the center-of-mass frame? Can you
exclude the decay of positronium to two photons on the basis of
parity conservation?

(c) Let us consider now whether rotational invariance, i.e., conserva-
tion of angular momentum, puts any constraints on the permitted
decays of positronium. Can the orthopositronium state decay to
two photons? What about the parapositronium state?

5. The “charge conjugation” operator, C, is an operator that changes all
particles into their anti-particles. Consider the group of order 2 gen-
erated by the charge conjugation operator. This group has elements
{I, C}, where I is the identity element. The electromagnetic interac-
tion is invariant with respect to the actions of this group. That is, any
electromagnetic process for a system of particles should proceed iden-
tically if all the particles are replaced by their anti-particles. Hence, C
is a conserved quantity. Let’s consider the implications of this for the
1S0 and 3S1 positronium decays to two photons. [See the preceeding
exercise for a discussion of positronium. Note that you needn’t have
done that problem in order to do this one.]

(a) The result of operating C on a photon is to give a photon, i.e.,
the photon is its own anti-particle, and is thus an eigenstate of
C. What is the eigenvalue? That is, what is the “C-parity” of
the photon? You should give your reasoning. No credit will be
given for just writing down the answer, even if correct. [Hint:
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think classically about electromagnetic fields and how they are
produced.] Hence, what is the C-parity of a system of n photons?

(b) It is a bit trickier to figure out the charge conjugation of the
positronium states. Since these are states consisting of a particle
and its antiparticle, we suspect that they may also be eigenstates
of C. But is the eigenvalue positive or negative? To determine
this, we need to know a bit more than we know so far.

Let me give an heuristic argument for the new understanding that
we need. First, although we haven’t talked about it yet, you prob-
ably already know about the “Pauli Exclusion Principle”, which
states that two identical fermions cannot be in the same state.

Suppose we have a state consisting of two electrons, |xxx1, SSS1;xxx2, SSS2〉.
We may borrow an idea we introduced in our discussion of the har-
monic oscillator, and define a “creation operator”, a†(xxx,SSS), which
creates an electron at xxx with spin SSS. Consider the two-electron
state:

[a†(xxx1, SSS1)a
†(xxx2, SSS2) + a†(xxx2, SSS2)a

†(xxx1, SSS1)]|0〉, (501)

where |0〉 is the “vacuum” state, with no electrons. But this puts
both electrons in the same state, since it is invariant under the in-
terchange 1 ↔ 2. Therefore, in order to satisfy the Pauli principle,
we must have that

a†(xxx1, SSS1)a
†(xxx2, SSS2) + a†(xxx2, SSS2)a

†(xxx1, SSS1) = 0 (502)

That is, the creation operators anti-commute. To put it an-
other way, if two electrons are interchanged, a minus sign is in-
troduced. You may be concerned that a positron and an electron
are non-identical particles, so maybe this has nothing to do with
positronium. However, the relativistic description is such that the
positron and electron may be regarded as different “components”
of the electron (e.g., the positron may be interpreted in terms of
“negative-energy” electron states), so this anti-commutation rela-
tion is preserved even when creating electrons and positrons.

Determine the C-parity of the 3S1 and 1S0 states of positronium,
and thus deduce whether decays to two photons are permitted
according to conservation of C. [Hint: Consider a positronium
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state and let C act on it. Relate this back to the original state by
appropriate transformations.]

6. Suppose we have a system with total angular momentum 1. We pick
a basis corresponding to the three eigenvectors of the z-component of
angular momentum, Jz, with eigenvalues +1, 0,−1, respectively. We
are given an ensemble described by density matrix:

ρ =
1

4




2 1 1
1 1 0
1 0 1


 .

(a) Is ρ a permissible density matrix? Give your reasoning. For the
remainder of this problem, assume that it is permissible. Does it
describe a pure or mixed state? Give your reasoning.

(b) Given the ensemble described by ρ, what is the average value of
Jz?

(c) What is the spread (standard deviation) in measured values of Jz?

7. Let us consider the application of the density matrix formalism to the
problem of a spin-1/2 particle (such as an electron) in a static external
magnetic field. In general, a particle with spin may carry a magnetic
moment, oriented along the spin direction (by symmetry). For spin-
1/2, we have that the magnetic moment (operator) is thus of the form:

µµµ =
1

2
γσσσ, (503)

where σσσ are the Pauli matrices, the 1
2

is by convention, and γ is a
constant, giving the strength of the moment, called the gyromagnetic
ratio. The term in the Hamiltonian for such a magnetic moment in an
external magnetic field, BBB is just:

H = −µµµ ·BBB. (504)

Our spin-1/2 particle may have some spin-orientation, or “polarization
vector”, given by:

PPP = 〈σσσ〉. (505)
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Drawing from our classical intuition, we might expect that in the ex-
ternal magnetic field the polarization vector will exhibit a precession
about the field direction. Let us investigate this.

Recall that the expectation value of an operator may be computed from
the density matrix according to:

〈A〉 = Tr(ρA). (506)

Furthermore, recall that the time evolution of the density matrix is
given by:

i
∂ρ

∂t
= [H(t), ρ(t)]. (507)

What is the time evolution, dP/dt, of the polarization vector? Express
your answer as simply as you can (more credit will be given for right
answers that are more physically transparent than for right answers
which are not). Note that we make no assumption concerning the
purity of the state.

8. Let us consider a system of N spin-1/2 particles (as in the previous
problem) per unit volume in thermal equilibrium, in our external mag-
netic field B. [Even though we refer to the previous exercise, the solu-
tion to this problem does not require solving the previous one.] Recall
that the canonical distribution is:

ρ =
e−H/T

Z
, (508)

with partition function:

Z = Tr
(
e−H/T

)
. (509)

Such a system of particles will tend to orient along the magnetic field,
resulting in a bulk magnetization (having units of magnetic moment
per unit volume), M.

(a) Give an expression for this magnetization (don’t work too hard to
evaluate).

(b) What is the magnetization in the high-temperature limit, to lowest
non-trivial order (this I want you to evaluate as completely as you
can!)?

77



9. We have discussed Lie algrebras (with Lie product given by the com-
mutator) and Lie groups, in our attempt to deal with rotations. At one
point, we asserted that the structure (multiplication table) of the Lie
group in some neighborhood of the identity was completely determined
by the structure (multiplication table) of the Lie algebra. We noted
that, however intuitively pleasing this might sound, it was not actually
a trivial statement, and that it followed from the “Baker-Campbell-
Hausdorff” theorem. Let’s try to tidy this up a bit further here.

First, let’s set up some notation: Let L be a Lie algebra, and G be the
Lie group generated by this algebra. Let X, Y ∈ L be two elements of
the algebra. These generate the elements eX , eY ∈ G of the Lie group.
We assume the notion that if X and Y are close to the zero element of
the Lie algebra, then eX and eY will be close to the identity element of
the Lie group.

What we want to show is that the group product eXeY may be ex-
pressed in the form eZ , where Z ∈ L, at least for X and Y not too
“large”. Note that the non-trivial aspect of this problem is that, first,
X and Y may not commute, and second, objects of the form XY may
not be in the Lie algebra. Elements of L generated by X and Y must
be linear combinations of X, Y , and their repeated commutators.

(a) Suppose X and Y commute. Show explicitly that the product
eXeY is of the form eZ, where Z is an element of L. (If you think
this is trivial, don’t worry, it is!)

(b) Now suppose that X and Y may not commute, but that they are
very close to the zero element. Keeping terms to quadratic order
in X and Y , show once again that the product eXeY is of the form
eZ , where Z is an element of L. Give an explicit expression for Z.

(c) Finally, for more of a challenge, let’s do the general theorem: Show
that eXeY is of the form eZ , where Z is an element of L, as long
as X and Y are sufficiently “small”. We won’t concern ourselves
here with how “small” X and Y need to be – you may investigate
that at more leisure.

Here are some hints that may help you: First, we remark that the
differential equation

df

du
= Xf(u) + g(u), (510)
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where X ∈ L, and letting f(0) = f0, has the solution:

f(u) = euXf0 +
∫ u

0
e(u−v)Xg(v)dv. (511)

This can be readily verified by back-substitution. If g is indepen-
dent of u, then the integral may be performed, with the result:

f(u) = euXf0 + h(u,X)g, (512)

Where, formally,

h(u,X) =
euX − 1

X
. (513)

Second, if X, Y ∈ L, then

eXY e−X = eXc(Y ), (514)

where I have introduced the notation “Xc” to mean “take the
commutator”. That is, Xc(Y ) ≡ [X, Y ]. This fact may be demon-
strated by taking the derivative of

A(u;Y ) ≡ euXY e−uX (515)

with respect to u, and comparing with our differential equation
above to obtain the desired result.

Third, assuming X = X(u) is differentiable, we have

eX(u) d

du
e−X(u) = −h(1, X(u)c)

dX

du
. (516)

This fact may be verified by considering the object:

B(t, u) ≡ etX(u) ∂

∂u
e−tX(u), (517)

and differentiating (carefully!) with respect to t, using the above
two facts, and finally letting t = 1.

One final hint: Consider the quantity

Z(u) = ln
(
euXeY

)
. (518)

The series:

`(z) =
ln z

z − 1
= 1 − z − 1

2
+

(z − 1)2

3
− · · · (519)

plays a role in the explicit form for the result. Again, you are not
asked to worry about convergence issues.
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10. In an earlier exercise we considered the implication of rotational in-
variance for the decays of positronium states into two photons. Let us
generalize and broaden that discussion here. Certain neutral particles
(e.g., π0, η, η′) are observed to decay into two photons, and others (e.g.,
ω, φ, ψ) are not. Let us investigate the selection rules implied by an-
gular momentum and parity conservation (satisfied by electromagnetic
and strong interactions) for the decay of a particle (call it “X”) into
two photons. Thus, we ask the question, what angular momentum J
and parity P states are allowed for two photons?

Set up the problem in the center-of-mass frame of the two photons,
with the z-axis in the direction of one photon. We know that since a
photon is a massless spin-one particle, it has two possible spin states,
which we can describe by its “helicity”, i.e., its spin projection along its
direction of motion, which can take on the values ±1. Thus, a system
of two photons can have the spin states:

|↑↑〉, |↓↓〉, |↑↓ + ↓↑〉, |↑↓ − ↓↑〉

(The first arrow refers to the photon in the +z direction, the second
to the photon in the −z direction, and the direction of the arrow in-
dicates the spin component along the z-axis, NOT to the helicity.)
We consider the effect on these states of three operations (which, by
parity and angular momentum conservation, should commute with the
Hamiltonian):

• P : parity – reverses direction of motion of a particle, but leaves
its angular momentum unaltered.

• Rz(α): rotation by angle α about the z-axis. A state with a given
value of Jz (z-component of angular momentum) is an eigenstate,
with eigenvalue eiαJz .

• Rx(π): rotation by π about x-axis. For our two photons, this
reverses the direction of motion and also the angular momentum
of each photon. For our “X” particle, this operation has the effect
corresponding to the effect on the spherical harmonic with the
appropriate eigenvalues:

Rx(π)YJJz(Ω)
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(Note that the Ylm functions are sufficient, since a fermion ob-
viously can’t decay into two photons and conserve angular mo-
mentum – hence X is a boson, and we needn’t consider 1

2
-integer

spins.)

Make sure that the above statements are intuitively clear to you.

(a) By considering the actions of these operations on our two-photon
states, complete the following table: (one entry is filled in for you)

Photonic Spin Transformation
State P Rz(α) Rx(π)
|↑↑〉 + |↑↑〉
|↓↓〉
|↑↓ + ↓↑〉
|↑↓ − ↓↑〉

(b) Now fill in a table of eigenvalues for a state (i.e., our particle
“X”) of arbitrary integer spin J and parity P (or, if states are not
eigenvectors, what the transformations yield):

Spin J Transformation
P Rz(α) Rx(π)

0
{

+1
−1

}

1
{

+1
−1

}

2, 4, 6, ...
{

+1
−1

}

3, 5, 7, ...
{

+1
−1

}

Note that there may be more than one eigenvalue of Rz(α) for a
given row, corresponding to the different possible values of Jz.

(c) Finally, by using your answers to parts (a) and (b), determine the
allowed and forbidden JP states decaying into two photons, and
the appropriate photonic helicity states for the allowed transitions.
Put your answer in the form of a table:

Parity Spin
0 1 2,4,... 3,5,...

+1
−1 |↑↓ − ↓↑〉
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You have (I hope) just derived something which is often referred to as
“Yang’s theorem”. Note: People often get this wrong, so be careful!

11. We said that if we are given an arbitrary representation, D(u), of
SU(2), it may be reduced to a direct sum of irreps Dr(u):

D(u) =
∑

r

⊕Dr(u). (520)

The multiplicities mj (the number of irreducible representations Dr

which belong to the equivalence class of irreducible representations
characterized by index j) are unique, and they are given by:

mj =
∫

SU(2)
d(u)χj(u−1)χ(u), (521)

where χ(u) = Tr [D(u)].

(a) Suppose you are given a representation, with characters:

χ [ueee(θ)] = 1 +
sin 3

2
θ + 2 sin 7

4
θ cos 1

4
θ

sin 1
2
θ

. (522)

What irreducible representations appear in the reduction of this
representation, with what multiplicities?

(b) Does the representation we are given look like it could correspond
to rotations of a physically realizable system? Discuss.

12. In nuclear physics, we have the notion of “charge independence”, or
the idea that the nuclear (strong) force does not depend on whether
we are dealing with neutrons or protons. Thus, the nuclear force is
supposed to be symmetric with respect to unitary transformations on
a space with basis vectors p =

(
1
0

)
, n =

(
0
1

)
. Neglecting the overall

phase symmetry, we see that the symmetry group is SU(2), just as for
rotations. As with angular momentum, we can generate representations
of other dimensions, and work with systems of more than one nucleon.
By analogy with angular momentum, we say that the neutron and
proton form an “isotopic spin” (or “isospin”) doublet, with

|n〉 = |I =
1

2
, I3 = −1

2
〉 (523)

|p〉 = |I =
1

2
, I3 = +

1

2
〉 (524)
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(The symbol “T” is also often used for isospin). Everything you know
about SU(2) can now be applied in isotopic spin space.

Study the isobar level diagram of the He6,Li6,Be6 nuclear level schemes,
and discuss in detail the evidence for charge independence of the nu-
clear force. These graphs are quantitative, so your discussion should
also be quantitative. Also, since these are real-life physical systems,
you should worry about real-life effects which can modify an idealized
vision.

You may find an appropriate level scheme via a google search (you want
a level diagram for the nuclear isobars of 6 nucleons), e.g., at:
http://www.tunl.duke.edu/nucldata/figures/06figs/06 is.pdf
For additional reference, you might find it of interest to look up:
F. Ajzenberg-Selove, “Energy Levels of Light Nuclei, A = 5-10,” Nucl.
Phys. A490 1-225 (1988)
(see also http://www.tunl.duke.edu/nucldata/fas/88AJ01.shtml).

13. We defined the “little-d” functions according to:

djm1m2
(θ) = Dj

m1m2
(0, θ, 0) = 〈j,m1|e−iθJ2|j,m2〉

where the matrix elements Dj
m1m2

(ψ, θ, φ), parameterized by Euler an-
gles ψ, θ, φ, are given in the “standard representation” by:

Dj
m1m2

(ψ, θ, φ) = 〈j,m1|Dj(u)|j,m2〉 = e−i(m1ψ+m2φ)djm1m2
(θ)

We note that an explicit calculation for these matrix elements is pos-
sible via:

Dj
m1m2

(u) = Pjm1(∂x, ∂y)Pjm2(u11x + u21y, u12x + u22y) (525)

where

Pjm(x, y) ≡ xj+myj−m√
(j +m)!(j −m)!

. (526)

Prove the following handy formulas for the djm1m2
(θ) functions:

a) dj∗m1m2
(θ) = djm1m2

(θ) (reality of dj functions)

b) djm1m2
(−θ) = djm2m1

(θ)
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c) djm1m2
(θ) = (−)m1−m2djm2m1

(θ)

d) dj−m1,−m2
(θ) = (−)m1−m2djm1m2

(θ)

e) djm1m2
(π − θ) = (−)j−m2dj−m1,m2

(θ) = (−)j+m1djm1,−m2
(θ)

f) djm1m2
(2π + θ) = (−)2jdjm1m2

(θ)

14. We would like to consider the (qualitative) effects on the energy levels
of an atom which is moved from freedom to an external potential (a
crystal, say) with cubic symmetry. Let us consider a one-electron atom
and ignore spin for simplicity. Recall that the wave function for the
case of the free atom looks something like Rnl(r)Ylm(θ, φ), and that
all states with the same n and l quantum numbers have the same
energy, i .e., are (2l + 1)-fold degenerate. The Hamiltonian for a free
atom must have the symmetry of the full rotation group, as there are
no special directions. Thus, we recall some properties of this group
for the present discussion. First, we remark that the set of functions
{Ylm : m = −l,−l + 1, · · · , l − 1, l} for a given l forms the basis for a
(2l + l)-dimensional subspace which is invariant under the operations
of the full rotation group. [A set {ψi} of vectors is said to span an
invariant subspace Vs under a given set of operations {Pj} if Pjψi ∈ Vs
∀i, j.] Furthermore, this subspace is “irreducible,” that is, it cannot be
split into smaller subspaces which are also invariant under the rotation
group.

Let us denote the linear transformation operator corresponding to ele-
ment R of the rotation group by the symbol P̂R, i.e.:

P̂Rf(~x) = f(R−1~x)

84



The way to think about this equation is to regard the left side as giving
a “rotated function,” which we evaluate at point ~x. The right side tells
us that this is the same as the original function evaluated at the point
R−1~x, where R−1 is the inverse of the rotation matrix corresponding to
rotation R. Since {Ylm} forms an invariant subspace, we must have:

P̂RYlm =
l∑

m′=−1

Ylm′Dl(R)m′m

The expansion coefficients, Dl(R)m′m, can be regarded as the elements
of a matrix Dl(R). As discussed in the note, D` corresponds to an
irreducible representation of the rotation group.

Thus, for a free atom, we have that the degenerate eigenfunctions of
a given energy must transform according to an irreducible representa-
tion of this group. If the eigenfunctions transform according to the lth

representation, the degeneracy of the energy level is (2l+1) (assuming
no additional, “accidental” degeneracy).

I remind you of the following:

Definition: Two elements a and b of a group are said to belong to the
same “class” (or “equivalence class” or “conjugate class”) if there exists
a group element g such that g−1ag = b.

The first two parts of this problem, are really already done in the note,
but here is an opportunity to think about it for yourself:

(a) Show that all proper rotations through the same angle ϕ, about
any axis, belong to the same class of the rotation group.

(b) We will need the character table of this group. Since all elements
in the same class have the same character, we pick a convenient
element in each class by considering rotations about the z-axis,
R = (α, z) (means rotate by angle α about the z-axis). Thus:

P̂(α,z)Y`m = e−imαY`m

(which you should convince yourself of).

Find the character “table” of the rotation group, that is, find
χ`(α), the character of representation D` for the class of rotations
through angle α. If you find an expression for the character in the
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form of a sum, do the sum, expressing your answer in as simple a
form as you can.

(c) At last we are ready to put our atom into a potential with cubic
symmetry. Now the symmetry of the free Hamiltonian is broken,
and we are left with the discrete symmetry of the cube. The
symmetry group of proper rotations of the cube is a group of
order 24 with 5 classes. Call this group “O”.

Construct the character table for O.

(d) Consider in particular how the f -level (l = 3) of the free atom
may split when it is placed in the “cubic potential”. The seven
eigenfunctions which transform according to the irreducible rep-
resentation D3 of the full group will most likely not transform
according to an irreducible representation of O. On the other
hand, since the operations of O are certainly operations of D, the
eigenfunctions will generate some representation of O.

Determine the coefficients in the decomposition.

D3 = a1O
1 ⊕ a2O

2 ⊕ a3O
3 ⊕ a4O

4 ⊕ a5O
5,

where Oi are the irreducible representations of O. Hence, show
how the degeneracy of the 7-fold level may be reduced by the cubic
potential. Give the degeneracies of the final levels.

Note that we cannot say anything here about the magnitude of
any splittings (which could “accidentally” turn out to be zero!),
or even about the ordering of the resulting levels – that depends
on the details of the potential, not just its symmetry.

15. We perform an experiment in which we shine a beam of unpolarized
white light at a gas of excited hydrogen atoms. We label atomic states
by |n`m〉, where ` is the total (orbital, we are neglecting spin in this
problem) angular momentum, m is the z-component of angular momen-
tum (Lz|n`m〉 = m|n`m〉), and n is a quantum number determining
the radial wave function. The light beam is shone along the x-axis.

We are interested in transition rates between atomic states, induced by
the light. Since we are dealing with visible light, its wavelength is much
larger than the size of the atom. Thus, it is a good first approximation
to consider only the interaction of the atomic dipole moment with the
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electric field of the light beam. That is, the spatial variation in the
plane wave eikx, describing the light beam, may be replaced by the
lowest-order term in its expansion, i.e., by 1. Thus, we need only
consider the interaction of the dipole moment with the electric field of
the light beam, taken to be uniform. The electric dipole moment of
the atom is proportional to exxx, where xxx is the position of the electron
relative to the nucleus. Hence, in the “dipole approximation”, we are
interested in matrix elements of xxx ·EEE, where EEE is the electric field vector
of the light beam.

Calculate the following ratios of transition rates in the dipole approxi-
mation:

a)
Γ(|23, 1, 1〉 → |1, 0, 0〉)
Γ(|23, 1, 0〉 → |1, 0, 0〉)

b).
Γ(|3, 1, 0〉 → |4, 2, 1〉)

Γ(|3, 1,−1〉 → |4, 2, 0〉)

[Hint: this is an application of the Wigner-Eckart theorem.]

16. It is possible to arrive at the Clebsch-Gordan coefficients for a given
situation by “elementary” means, i.e., by considering the action of the
raising and lowering operators and demanding orthonormality. Hence,
construct a table of Clebsch-Gordan coefficients, using this approach,
for a system combining j1 = 2 and j2 = 1 angular momenta. I find it
convenient to use the simple notation |jm〉 for total quantum numbers
and |j1m1〉|j2m2〉 for the individual angular momentum states being
added, but you may use whatever notation you find convenient.] You
will find (I hope) that you have the freedom to pick certain signs. You
are asked to be consistent with the usual conventions where

〈33| (|22〉|11〉) ≥ 0 (527)

〈22| (|22〉|10〉) ≥ 0 (528)

〈11| (|22〉|1−1〉) ≥ 0 (529)

(in notation 〈jm| (|j1m1〉|j2m2〉)).
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17. In our discussion of the Wigner-Eckart theorem, we obtained the re-
duced matrix element for the angular momentum operator: 〈j ′k′‖J‖j ′′k′′〉.
This required knowing the Clebsch-Gordan coefficient C(1, j, j; 0, m,m).
By using the general prescription for calculating the 3j symbols we de-
veloped, calculate the 3j symbol

(
1 j j
0 m −m

)
,

and hence obtain C(1, j, j; 0, m,m).

18. Rotational Invariance and angular distributions: A spin-1 particle is
polarized such that its spin direction is along the +z axis. It decays,
with total decay rate Γ, to π+π−. What is the angular distribution,
dΓ/dΩ, of the π+? Note that the π± is spin zero. What is the angular
distribution if the intial spin projection is zero along the z-axis? Minus
one? What is the result if the intial particle is unpolarized (equal
probabilities for all spin orientations)?

19. Here is another example of how we can use the rotation matrices to
compute the angular distribution in a decay process. Let’s try another
similar example. Consider a spin one particle, polarized with its angular
momentum along the ±z-axis, with equal probabilities. Suppose it
decays to two spin-1/2 particles, e.g., an electron and a positron.

(a) Such the decay occurs with no orbital angular momentum. What
is the angular distribution of the decay products, in the frame of
the decaying particle?

(b) If this is an electromagnetic decay to e+e−, and the mass of the
decaying particle is much larger than the electron mass, the sit-
uation is altered, according to relativistic QED. In this case, the
final state spins will be oriented in such a way as to give either
m = 1 or m = −1 along the decay axis, where m is the total
projected angular momentum. What is the angular distribution
of the decay products in this case?

88


