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1 Introduction

This note summarizes and examines the foundations of quantum mechanics,
including the mathematical background.

2 General Review of the Ideas of Quantum

Mechanics

2.1 States

We have in mind that there is a “system”, which is describable in terms
of possible “states”. A system could be something simple, such as a single
electron, or complex, such as a table.
Suppose we have a system consisting of N spinless particles. We use

the term “particle” to denote any object for which any internal structure
is unimportant. Classically, we may describe the state of this system by
specifying, at some time t the generalized coordinates and momenta:

{qi(t), pi(t), i = 1, 2, . . . , N} , (1)

where the spatial dimensionality of the qi and pi is implicit. The time evolu-
tion of this system is given by Hamilton’s equations:

q̇i =
∂H

∂pi

(2)

−ṗi =
∂H

∂qi
(3)

In quantum mechanics, it is not possible to give such a complete speci-
fication to arbitrary precision. For example, the limit to how well we may
specify the position and momentum of a particle in one dimension is limited
by the “uncertainty principle”: ∆x∆p ≥ 1/2, where ∆ indicates a range of
possible values. We’ll investigate this relation more explicitly later, but for
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now it should just be a reminder of your elementary quantum mechanics un-
derstanding. We must be content with selecting a suitable set of quantities
which can be simultaneously specified to describe the state. We refer to this
set as a “Complete Set of Commuting Observables” (CSCO).
Specifying a CSCO corresponds to specifying the eigenvalues of an ap-

propriate complete set of commuting Hermitian operators, for the state in
question. Measurements (eigenvalues of Hermitian operators) of other quan-
tities cannot be predicted with certainty, only probabilities of outcomes can
be given. The evolution in time of the system is described by a “wave equa-
tion”, for example, the Schrödinger equation.

2.2 Probability Amplitudes

The quantum mechanical state of a system is described in terms of waves,
called probability amplitudes, or just “amplitudes” for short. Note that
probabilities themselves are always non-negative, so it is more difficult to
imagine the probabilities themselves as wavelike. Instead, the probabilities
are obtained by squaring the amplitudes:

Probability ∼ |ψ|2, (4)

where ψ stands for the amplitude. More explicitly, the probability of ob-
serving state variable (e.g., position) x in volume element d3(x) around x is
equal to:

|ψ(x)|2 d3(x). (5)

A quantum mechanical probability is analogous to the intensity of a classical
wave.
The quantum mechanical wave evolves in time according to a time evo-

lution operator, e−iHt involving the Hamiltonian, H . Hence, if

e−iHtψ0(x) = ψ(x, t), (6)

where ψ0(x) is the wave function at t = 0 in terms of coordinate position x,
then differentiation gives:

i
dψ(x, t)

dt
= Hψ(x, t). (7)

We recognize this as the Schrödinger equation. Thus, the temporal frequency
of the wave is determined by the energy structure. For a particle of energy
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E, the frequency is ω = E (or ν = E/2π). This hypothesis is also applied in
relativistic situations, for example, for a photon.
The spatial behavior of a wave is given by the deBroglie hypothesis:

A particle is described as a quantum mechanical wave with wavelength:

λ̄ ≡ λ

2π
=
1

p
, (8)

or with wavenumber k = 1/λ̄ = p. This relation is assumed to also hold
relativistically.
We may make a brief aside on the subject of “dispersion relations”. As in

classical electrodynamics, the relation between ω and k for a wave is called a
dispersion relation. In the case of the quantum mechanics of a free particle
of mass m, the dispersion relation is

ω = k2/2m (9)

for a non-relativistic particle (when we do not include the rest mass in the
energy, hence E = p2/2m), and

ω2 = k2 +m2 (10)

for a relativistic particle.

2.3 Wave Equations

In quantum mechanics, the dynamics is determined by the wave equation.
The form of the wave equation is given by the dispersion relation. By analogy
with light, and ignoring issues of mathematical rigor, let us build physical
waves describing a particle of mass m from superpositions of plane waves.
Note well that we are assuming that the wave equation is linear, so linear
combinations of solutions are also solutions. Our plane wave building blocks
are:

ψ(x, t) = Aei(k·x−ωt), (11)

where k=p and ω = E. We presume that this forms a “complete set” of
functions, that is, any physical state may be expanded as a linear superpos-
tion of elements of this set. Let us suppose we have a free particle. We search
for a differential equation which is satisfied by all plane waves which could
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describe the particle. We shall postulate this to be our wave equation. As we
saw above, the dispersion equation for a (possibly relativistic) free particle is

E2 − p2 = m2, (12)

or
ω2 − k2 = m2. (13)

Considering the following derivatives of the plane waves

∂2ψ(x, t)

∂t2
= −ω2ψ(x, t), (14)

∇2ψ(x, t) = −k2ψ(x, t), (15)

we have
∂2ψ

∂t2
−∇2ψ = −m2ψ. (16)

We postulate this to be the desired wave equation. It is known as the Klein-
Gordon equation. It describes the motion, in quantum mechanics, of a free
particle of mass m.
However, free particles quickly become boring; we really want to be able

to discuss interactions, e.g., interacting particles. Demanding relativistic
invariance leads us into quantum field theory. However, we often don’t require
full invariance, and typically make two very useful simplifying assumptions
in non-relativistic quantum mechanics:

• The creation and destruction of particles is assumed not to occur. The
number of each particle type is constant. However, there is occasional
need to make exceptions to this assumption; the most notable is for
the photon.

• All particles (again, except for photons!) are assumed to be non-
relativistic. Typically this means we stop at order v2 in the energy,
but sometimes we carry out calculations to higher order.

We have already seen that these assumptions are reasonable for ordinary
atomic systems.
In non-relativistic quantum mechanics (Schrödinger theory) the wave

function ψ(x, t) really has the precise meaning:
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The probability that a measurement of the particle’s position at
time t will yield x in d3(x) around x is:

|ψ(x, t)|2d3(x). (17)

|ψ(x, t)|2 is a probability density.

Note that ψ(x, t) and ψ′(x, t) = eiθψ(x, t), where θ is a real number, de-
scribe the same physical situation, since the probability density is unchanged
[where we make the inherent assumption that it is probabilities we can mea-
sure, not probability amplitudes].
Let us take the non-relativistic limit of our free particle wave equation:

E =
√
m2 + p2

= m+
p2

2m
+ pO

[(
p

m

)3
]
. (18)

Hence,

ψ(x, t) = Aei(p·x−Et)

≈ Aei(p·x− p2

2m
t)e−imt (19)

≈ ψS(x, t)e
−imt,

where

ψS(x, t) ≡ ei(p·x− p2

2m
t). (20)

But |ψ(x, t)|2 = |ψS(x, t)|2, so we may drop the overall e−imt phase factor and
look for a linear differential equation satisfied by our non-relativistic plane
wave solutions (dropping the S subscript now). We have

∂ψ

∂t
= −i p

2

2m
ψ, (21)

∇2ψ = −p2ψ. (22)

Thus,

i
∂ψ

∂t
= − 1

2m
∇2ψ. (23)

This is the Schrödinger equation for a free particle of mass m. Note the
correspondence with the dispersion relation, Eq. 9.
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In the non-relativistic case, it is easy to generalize to situations where
the particle is not free: Introduce a potential function, V (x, t) to describe
interactions. Our hypothesis is that the time dependence of the wave is
determined by ω = E. With V �= 0, this gives

E = T + V =
p2

2m
+ V (x, t). (24)

Thus,

i
∂ψ

∂t
= i

∂

∂t
exp [i(p · x −Et)]

= Eψ

= Hψ, (25)

where H = T + V is the Hamiltionian operator. We may sometimes need to
make the distinction between an operator and its spectral values (eigenvalues)
more explicit. When this arises, we will use notation of the form Ĥ or Hop

to denote the operator. However, we usually rely on context, and omit such
notational guides.
We also have that

− 1

2m
∇2ψ(x, t) =

p2

2m
ψ(x, t) = (E − V )ψ(x, t). (26)

Putting this together with Eq, 25, we find:

Hψ(x, t) =
{
Eψ(x, t)
i∂tψ(x, t)

}
= − 1

2m
∇2ψ(x, t) + V (x, t)ψ(x, t). (27)

The upper form, in which E is the energy eignenvalue for a static potential,
is referred to as the time-independent Schrödinger equation. The lower
form is referred to as the time-dependent Schrödinger equation.

3 Mathematical Considerations

Let us take a step back now, and set up a more rigorous mathematical frame-
work in which to implement the notions we have been discussing. It is a
highly reassuring feature of quantum mechanics that we are able to do so.
We have decided to describe particles by “waves”, giving “probability am-

plitudes”, where absolute squares lead to measurable physical probabilities.
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Waves are conveniently described by complex-valued functions of whatever
generalized coordinates are involved. An essential feature is that waves in-
terfere, hence our state space must allow for the possibility of superposition
of waves.

• The requirement of superposability suggests that the state space of
permissible wave functions should be a vector space. This gives us the
property that linear combinations of physical amplitudes lead to new
physically allowed amplitudes.

• To deal with the probability interpretation, we briefly consider the
definition of probability:

Def: Probability: If S is a (sample) space, and P (E) is a real additive
set function defined on sets E in S, then P is referred to as a
probability function if:

1. If E is a subset (event) in S, then P (E) ≥ 0.

2. P (S) = 1.

3. If E,F ⊆ S, and E ∩F = ∅, then P (E ∪F ) = P (E)+ P (F ).

4. If S is an infinite sample space, we require that:

P (E1 ∪E2 ∪ . . .) = P (E1) + P (E2) + . . . (28)

for any sequence of disjoint events E1, E2, . . . in S.

[For those with the mathematical background, we remark that a shorter
definition for probability is: A probability function is a measure on S
such that P (S) = 1. We note that P is defined on all subsets E of S,
hence is defined on a σ-ring.]

Thus, the requirement of a probability interpretation means that any
allowable wave function ψ(s) defined on sample space S must be nor-
malizable and square-integrable such that:∫

S
ψ∗(s)ψ(s)µ(ds) = 1. (29)

The integral here is in the Lebesgue-summable sense, and µ is the
appropriate measure function on subsets of S. A “measure function”
is simply a prescription for measuring the “sizes” of sets, implemented
in a mathematically rigorous manner.
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The mathematical considerations here are both critical to the foundation
of quantum mechanics and potentially unfamiliar to the reader, so we will
digress briefly in order to develop an intuitive understanding of the need for
them.
Apparently, it is important to know how to measure the sizes of sets

in our probability sample space. This is implemented abstractly in measure
theory. We will not develop this here; a couple of examples should provide the
intuition that is sufficient for present purposes. For a first example, suppose
our sample space is the set of real numbers, R1. In this case, the appropriate
way to measure sizes of sets is a suitable generalization of our ordinary notion
that the size of the interval (a, b) is just b − a. This generalization is called
the Lebesgue measure on R1. It has the property that a denumerable set
of discrete points is measureable, with measure zero.
We remark that the Reimann integral is not sufficiently general for our

purposes. A function f(x) is Riemann-integrable on [a, b] if and only if:

• f(x) is bounded.

• The set of points of discontinuity of f has Lebesgue measure zero.
For example, the integral ∫ 1

0
f(x) dx, (30)

where

f(x) =
{
0 if x is rational,
1 if x is irrational,

(31)

is not defined. The function is discontinuous at every point, hence the mea-
sure of the points of discontinuity is non-zero:

µ({points of discontinuity}) = µ({(0, 1)}) = 1. (32)

This is perhaps a pathological example. A more obvious example is that the
Riemann sum doesn’t allow us to sum over state variables with possibly dis-
crete spectra, e.g., quantized energy levels. We could handle such situations
in an ad hoc manner, but to build a rigorous foundation we resort to the
Lebesgue integral.
The idea of the Lebesgue integral is simple and elegant. Rather than

divide the “x-axis” up into intervals, as in the Riemann integral, we divide
the “y-axis”. That is, we partition the y-axis into intervals ∆yi, i = 1, 2, . . .

8



Choose a point yi in each interval. Consider the sets f
−1(∆yi). Multiply the

measure of each such set by the corresponding yi. Then sum the products.
The Lebesgue integral is the value of this sum in the limit where all of the
∆yi intervals vanish.

x x
a bba

f(x) f(x)

y
1

y2

y3

y
4

y
5

y6

f -1(∆∆x ∆

∆

{{

x
1 2

y
3)

y
3{

...

...

(a) (b)

Figure 1: (a) The Riemann integral is a limit of slices in x. (b) The Lebesgue
integral is a limit of slices in y.

IL ≡ lim
∆yi→0

∑
i

yiµ[f
−1(∆yi)]. (33)

For this to work, f−1(∆yi) must be measurable sets, that is, f(x) must
be a “measurable functon”:

Def: A real function f(x), defined on S is said to be measurable if, for
every real number u, the set Su = {x : f(x) < u, x ∈ S} is measurable.

For example, consider the function of Eqn. 31. Take, in the limit, y1 = 0 and
y2 = 1. Then

f−1(∆y1) = rational numbers

f−1(∆y2) = irrational numbers, (34)
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f(x)

u

   

Su

Figure 2: The set Su.

and

1 = µ([0, 1]) = µ({rationals on [0, 1]}) + µ({irrationals on [0, 1]})
= 0 + µ({irrationals on [0, 1]}). (35)

Hence, ∫ 1

0
f(x)µ(dx) = 1 (36)

is the Lebesgue integral.
The choice of measure (of the size of a set) may depend on the physical

circumstance. We have used the Lebesgue measure on R1, appropriate to
continuous state variables. Another important measure is the Dirac measure
(on S = R1): Let x0 ∈ R1. The Dirac measure associated with point x0 is
defined by:

µ(E) =
{
1 if x0 ∈ E
0 if x0 /∈ E.

(37)
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Note that this is the appropriate measure to use for “discrete” state variables:∫
S
f(x)µ(dx) = f(x0). (38)

We are still trying to build a suitable function space for our quantum
mechanical wave functions. What about “pathological” functions, e.g., with
many discontinuities. We will build into our space the concept that two
functions that differ only in ways which will not affect observable probabilities
are not to be considered as distinct. We proceed as follows:

Def: A property, Q(x), which depends on location x in space S, is said to
hold almost everywhere if the set of points for which Q does not
hold has measure zero.

Def: Two functions f1(x), f2(x), defined on S (that is, assume finite values
at every point of S) are said to be equivalent if f1(x) = f2(x) almost
everywhere: f1 ∼ f2.

If equivalent functions f1(x) and f2(x) are integrable in the Lebesgue
sense (“summable”) on a set E, then∫

E
f1(x)µ(dx) =

∫
E
f2(x)µ(dx). (39)

Thus, if we decompose the set of summable functions into classes of equivalent
functions, the integral can be regarded as a functional defined on the space
F , of these classes.

3.1 The Space L2

For our quantum mechanical wave functions we are of course interested in
complex functions. A complex function f(x) = f1(x) + if2(x), where f1 and
f2 are real functions, is said to be summable on E if f1 and f2 are summable:∫

E
f(x)µ(dx) =

∫
E
f1(x)µ(dx) + i

∫
E
f2(x)µ(dx). (40)

Theorem: A complex function f(x) is summable if and only if its absolute
value,

|f(x)| =
√
f1(x)2 + f2(x)2, (41)

is summable.
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Proof: Suppose f(x) = f1(x) + if2(x) is summable on E. Then f1 and f2

are summable on E. By virtue of our defintion of the integral, Eqn. 33,
|f1| and |f2| are therefore also summable. Hence,∫

E
|f(x)|µ(dx) =

∫
E
|f1(x) + if2(x)|µ(dx)

≤
∫

E
|f1(x)|+ |f2(x)|µ(dx), by the triangle inequality

< ∞. (42)

Conversely, suppose |f | is summable on E. Then, again referring to
the definition in Eqn. 33,

∣∣∣∣
∫

E
f(x)µ(dx)

∣∣∣∣ ≤
∫

E
|f(x)|µ(dx)

< ∞. (43)

Even for complex functions, the integral defines a linear functional. Let
L denote the space of complex functions f(x) such that |f(x)|2 is summable
on S: ∫

S
|f(x)|2µ(dx) <∞, for f(x) ∈ L. (44)

Theorem: The space L is a linear space (or “vector” space).

Proof: The principal step of the proof is as follows: Suppose f(x) ∈ L and
g(x) ∈ L. Then

|f(x) + g(x)|2 = 2|f(x)|2 + 2|g(x)|2 − |f(x)− g(x)|2
≤ 2|f(x)|2 + 2|g(x)|2. (45)

But 2|f(x)|2 + 2|g(x)|2 is summable, and hence |f(x) + g(x)|2 is sum-
mable.

The space L is our candidate space for physical quantum mechanical wave
functions. However, there is a problem with it: There are distinct elements
of L, differing on sets of measure zero, which correspond to the same physics.
Let us tidy this ugliness up. Consider Z the subset of L consisting of functions
f(x) such that ∫

S
|f(x)|2µ(dx) = 0. (46)
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Note that Z is a linear subspace of L, since if f ∈ Z, then kf ∈ Z for
all complex constants k, and if f, g ∈ Z, then f + g ∈ Z since |f + g|2 ≤
2|f |2 + 2|g|2. Thus, we can define the “factor space”,

L2 = L/Z. (47)

That is, two functions fa(x), fb(x) in L determine the same class in L
2 if and

only if the difference fa − fb vanishes almost everywhere, i.e.,∫
S
|fa(x)− fb(x)|2µ(dx) = 0. (48)

We say that the space L2 consists of functions f(x) such that |f(x)|2 is
summable on S, with the understanding that equivalent functions are not
considered distinct. In other words, L2 is a space of equivalence classes.
Finally, we add to this space the notion of a scalar product. We start by

noting that the product of two elements of L2 is summable:

Theorem: If f, g ∈ L2, then f ∗g is summable on S.

Proof: Write

f ∗g =
1

4

(
|f + g|2 − |f − g|2 + i|f − ig|2 − i|f + ig|2

)
(49)

Each term on the right is summable, and hence the product f ∗g ∈ L2.

Theorem: L2 is a Hilbert space, with scalar product defined by:

〈f |g〉 ≡
∫

S
f(x)∗g(x)µ(dx). (50)

Proof: The proof starts by showing that L2 is a pre-Hilbert space, that is,
a linear space upon which a scalar product has been properly defined.
This consists in showing that:

1. 〈f |f〉 = 0 if and only if f = 0. The fact that L2 is a space of
equivalence classes is crucial here.

2. 〈f |g〉 = 〈g|f〉∗.
3. 〈f |cg〉 = c〈f |g〉.
4. 〈f |g1 + g2〉 = 〈f |g1〉+ 〈f |g2〉.
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Once it has been demonstrated that L2 is a pre-Hilbert space, it remains
to show that L2 is complete. That is, it must be shown that every
Cauchy sequence of vectors in L2 converges to a vector in L2.

A fundamental postulate of quantum mechanics is:

To every physical system S there corresponds
a separable Hilbert space, HS.

• L2 appears to be a suitable space for our probability amplitudes since
it is a linear space (hence we have superposition), and its elements are
normalizable (square-summable, hence can make a probability inter-
pretation).

• The addition of the scalar product permits us to make projections in our
vector space. Note tht L itself was not sufficient for this construction,
since 〈f |f〉 = 0 is not equivalent to f = 0 in L. It should be understood
that using L2 is all right, since functions which differ only on sets
of measure zero will yield the same probabilistic, and hence physical,
results.

• The availability of the scalar product in particular leads to the possi-
bility of constructing a (orthonormal) “basis”.

• Completeness means that we have included a sufficiently large set of
vectors that we won’t encounter difficulties when we consider certain
sequences of vectors. We can construct a complete orthonormal ba-
sis {|eα〉} on a Hilbert space such that every vector |x〉 ∈ H can be
expanded:

|x〉 =∑
α

|eα〉〈eα|x〉. (51)

• Abstractly, a separable space is a topological space T which contains a
denumerable (countable) set of points {t1, t2, . . .} which is dense in T .
The point of the postulate that the Hilbert space corresponding to any
physical system be separable is that there is then a denumerable dense
set of vectors. We may find a complete denumerable basis in which to
expand our vectors.

To complete the connection of this postulate with our space L2 we have
the theorem:
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Theorem: The space L2(a, b) (where it is permissible for a = −∞, b =∞)
with Lebesgue measure is separable.

Proof: To prove this theorem, we first prove that there exists a complete
denumerable orthonormal basis in L2. For example, on L2(0, 2π), the
set of functions:

eikx

√
2π
, k = 0,±1,±2, . . . , (52)

forms a complete orthonormal system. Then we show that from this
basis we can construct a countable dense set of vectors in L2.

It may be noted that non-separable Hilbert spaces do exist. However, we
have so far not found a need to consider them for quantum mechanics.
On L2(−∞,∞), with measure µ(dx) = e−x2

dx, the Hermite polynomials:

Hn(x) =
ex2√
2nn!

√
π

dn

dxn
e−x2

, n = 0, 1, . . . (53)

form a complete orthonormal system. Alternatively, with measure µ(dx) =
dx, the functions e−x2

/2Hn(x) form a complete orthonormal system.

4 Observables

An observable Q is a physical quantity. In quantum mechanics, we deal
with the probability p(Q,∆) that a measurement will yield a value of Q in
a subset ∆ of the set of real numbers. A fundamental postulate of quantum
mechanics is that:

Every observable corresponds to a self-adjoint
operator defined in HS.

The term “defined in HS” means, for operator Q, that x ∈ DQ ⊂ HS, and
Qx ∈ RQ ⊂ HS, where DQ is the domain of the operator, and RQ is its
range.
Self-adjoint operators are evidently an important class of operator – the

key point is that a self-adjoint operator is also a Hermitian operator, and
hence has a real eigenvalue spectrum. This is the physical reason why they
are of interest. Let us look at some of the mathematical aspects.
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Def: (Adjoint) Let L be a linear operator, defined in HS with domain DL,
such that DL is dense in HS (that is, D̄L = HS, where D̄L is the closure
of DL). The adjoint, L†, of L is defined by:1

〈L†u|v〉 = 〈u|Lv〉, ∀v ∈ DL. (54)

In other words, u is a vector in HS such that there exists a w ∈ HS satisfying
〈u|Lv〉 = 〈w|v〉. If this holds, then we say w = L+u; the adjoint operator
maps u to w. The requirement that DL be dense in HS is necessary in order
for L† to be uniquely defined. To see this, suppose that it is not unique, i.e.,
suppose there exist two vectors wa, wb such that

〈u|Lv〉 = 〈wa|v〉 = 〈wb|v〉, ∀v ∈ DL. (55)

In this case, 〈(wa − wb)|v〉 = 0. But wa − wb is thus orthogonal to every
vector in a dense set, and therefore wa − wb = 0. This last point could use
some further proof; we’ll depend on its evident plausibility here.

Def: Self-adjoint: If L† = L (which means: DL† = DL, and L
†u = Lu for

all u ∈ DL), then L is said to be self-adjoint.

Note the distinction between a self-adjoint operator, and a Hermitian oper-
ator, defined according to:

Def: Hermitian: A linear operator L, with DL ⊂ HS, is called Hermitian
if

〈Lu|v〉 = 〈u|Lv〉, ∀u, v ∈ DL. (56)

For example, in the case of a finite dimensional vector space, L is a square
matrix, and we have:

〈u|Lv〉 = u†Lv (57)

〈Lu|v〉 = (Lu)†v (58)

= u†L†v

= u†Lv if L† = L. (59)

1There are a variety of notations used to denote the adjoint of an operator, most
notably L†, L+, and L∗. We’ll adopt the “dagger” notation here, as it is consistent
with the familiar “complex-conjugate–transpose” notation for matrices. The “asterisk”
notation is common also, but we avoid it here on the grounds of potential confusion with
simple complex conjugation.

16



In this case, a self-adjoint operator is also a Hermitian operator:

〈L†u|v〉 = 〈Lu|v〉 = 〈u|Lv〉, ∀u, v ∈ DL = DL† . (60)

However, a Hermitian operator is not necessarily a self-adjoint operator, if
the space is infinite dimensional. The issue is one of domain. It can happen,
in an infinite dimensional Hilbert space, that a Hermitian operator, L, has
DL ⊂ DL+ , as a proper subset. In this case, L is not self-adjoint.
Consider an example to illustrate this inequivalence. A differential equa-

tion (where L is a differential operator, and we write Lu = a) is not com-
pletely specified until we give certain boundary conditions which the solution
must satisfy. Thus, for a function u to belong to DL, not only must the ex-
pression Lu be defined, but u must also satisfy the boundary conditions. If
the boundary conditions are too restrictive, we might have DL ⊂ DL+ but
DL �= DL+ , so that a Hermitian operator may not be self-adjoint.
To illustrate with a specific example, let L = p be the momentum operator

in one dimension:

p =
1

i

d

dx
, x ∈ [a, b]. (61)

The boundary conditions are to be specified, but the domain of this operator
is otherwise the set of continuous functions on [a, b]. This set of functions is
dense in our Hilbert space L2(a, b). We look at the scalar product of pv with
u, where u and v are continuous functions:

〈u|pv〉 =
∫ b

a
u∗(x)

1

i

d

dx
v(x) dx (62)

=
1

i
u∗(x)v(x)|ba −

∫ b

a

[
1

i

d

dx
u∗(x)

]
v(x) dx

=
1

i
[u∗(b)v(b)− u∗(a)v(a)] + 〈pu|v〉 (63)

= 〈p†u|v〉 (64)

The u∗(b)v(b)−u∗(a)v(a) boundary term portion of Eqn. 63 must vanish for
all v ∈ Dp in order for p to be a Hermitian operator; hence we shall assume
this condition. There is, however, more than one way to achieve this, even
with the dense requirement. For example, we could impose the boundary
condition v(a) = v(b) = 0, so that Dp = {v|v is continuous, and v(a) =
v(b) = 0}. In this case, u need not satisfy any constraints at a or b, and
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Dp+ = {u|u is continuous} �= Dp, since

〈p+u|v〉 = 〈u|pv〉 = 〈1
i

d

dx
u|v〉, (65)

for all continuous functions u. We have p† = 1
i

d
dx
with Dp† = {u|u continu-

ous on [a, b]}. So, p is Hermitian, but not self-adjoint, since Dp is a proper
subset of Dp†.
On the other hand, if we had chosen the extension of the above p with

boundary condition v(a) = v(b), then we would find a restriction of the above
p†, with Dp† = {u|u(a) = u(b), u continuous on [a, b]}. With this definition
p is a self-adjoint operator.

5 The Uncertainty Principle

The famous “uncertainty principle” is discussed in every introductory quan-
tum mechanics course. We revisit it briefly here. First, the reader is reminded
of the important Schwarz inequality:

Theorem: For any vectors φ, ψ in our Hilbert space,

|〈φ|ψ〉| ≤
√
〈φ|φ〉〈ψ|ψ〉. (66)

Equality holds if and only if φ and ψ are linearly dependent: φ = cψ,
where c is a complex number.

Proof: One way to prove the Schwarz inequality is to consider the non-
negative definite scalar product:

〈φ+ reiθψ|φ+ reiθψ〉 ≥ 0. (67)

Expanding the left hand side results a quadratic expression for r. Con-
sidering the possible solutions for r yields a constraint on the discrim-
inant. The resulting inequality is the Schwarz inequality.

Suppose now that we have two self-adjoint operators A and B, and a
state vector in the domains of both. The average (mean) value (expectation
value) of observable A if the system is in state ψ is:

〈A〉 = 〈ψ|Aψ〉, (68)
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where we assume that ψ is normalized. Likewise, the mean of observable B is
〈B〉 = 〈ψ|Bψ〉. We are presently interested in learning something about the
spreads of the distributions of observations of A and B. Thus, it is convenient
to subtract out the means by defining “shifted” operators:

AS ≡ A− 〈A〉 (69)

BS ≡ B − 〈B〉. (70)

The domains of the shifted operators are the same as the domains of the
unshifted operators. We immediately have that 〈AS〉 = 〈BS〉 = 0.
Define the commutator of AS and BS:

[AS, BS] ≡ ASBS − BSAS = [A,B]. (71)

It should be noted that the product of two operators is defined by their
operation on a state vector: AB|ψ〉 means first apply operator B to ψ, then
apply A to the result. The obvious questions of domain need to be dealt with,
of course. Thus, let us further require ψ ∈ DAB, ψ ∈ DBA, and consider:

|〈[A,B]〉| = |〈ψ|ASBSψ〉 − 〈ψ|BSASψ〉| (72)

≤ |〈ψ|ASBSψ〉|+ |〈ψ|BSASψ〉| (triangle inequality)

≤ |〈ASψ|BSψ〉|+ |〈BSψ|ASψ〉| (self-adjointness)

≤ 2|〈ASψ|BSψ〉|
≤ 2

√
〈ASψ|ASψ〉〈BSψ|BSψ〉 (Schwarz inequality)

≤ 2
√
〈ψ|A2

Sψ〉〈ψ|B2
Sψ〉 (self-adjointness). (73)

The variance of a distribution is a measure of its spread. For an observ-
able Q, the variance for a system in state ψ is defined by:

σ2
Q ≡ 〈ψ|(Q− 〈Q〉)2ψ〉 = 〈Q2〉 − 〈Q〉2. (74)

The square root of the variance, σQ is called the standard deviation. We
see that, for example, σ2

A = 〈ψ|A2
Sψ〉. Thus, we may rewrite Eqn. 73 in the

form:

σAσB ≥ 1

2

√
|〈[A,B]〉|. (75)

This is a precise statement of the celebrated “uncertainty principle”. We shall
often use the convenient notation ∆A ≡ σA. The physical interpretation is
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that, if we have two non-commuting observables, the product of the variances
of the probability distributions for these two observables is bounded below.
This is typically interpreted further with statements such as “the ability to
measure both variables simulataneously is limited. A measurement of one
observable disturbs the system in a way that affects the result of a second
measurement of the other observable.” While there is some justification for
such statements, one must be careful not to carry them too far – in case
of confusion, come back to what the principle actually says! For example,
“the ability to measure” carries a connotation that there may be an issue
of experimental resolution involved. While expermental resolution generally
needs to be folded into the analysis of an actual experiment, it has nothing
to do with the present point.

5.1 Example: Angular Momentum

The angular momentum operator for a particle is L = x× p, where x is the
position operator, and p is the momentum operator. This may be expressed
in components as:

Li = εijkxjpk. (76)

The summation convention is used here: a sum is implied over repeated
indices, in this case, there is a sum over j, k = 1, 2, 3. The quantity εijk is
known as the antisymmetric symbol:

εijk =



+1 i, j, k =cylic permutation of 1, 2, 3,
−1 i, j, k =anti-cylic permutation of 1, 2, 3,
0 any two indices the same.

(77)

We remark that L = x × p = −p × x are both acceptable, since only
commuting components of x and p are paired.
We know that

[pm, xn] = −iδmn. (78)

We are interested in the commutation relations of the angular momentum
operators:

[Lα, Lβ] = εαjkεβmn[xjpk, xmpn] (79)

= i(εαjmεβjn − εαjnεβjm)xmpn, (80)
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where the algebra between Eqns. 79 and 80 is left as an exercise for the
reader. The reader is also encouraged to demonstrate that

Eαβ,mn ≡ εαjmεβjn − εαjnεβjm = εαjβεmjn. (81)

With the identity of Eqn. 81, we obtain

[Lα, Lβ] = iεαβγLγ . (82)

Thus, the uncertainty relation between components of angular momentum
is:

∆Lα∆Lβ ≥ 1

2
|〈[Lα, Lβ ]〉| = 1

2
|εαβγ〈Lγ〉|. (83)

Let us illustrate this with an explicit example. We first anticipate the
generalization of angular momentum to include spin, with the same com-
mutation relations, and consider the simplest system with non-zero angular
momentum, spin-1/2. We’ll follow common convention, and pick our basis
to be eignevectors of J3 (using now J to indicate angular momentum, leaving
L to stand for “orbital” angular momentum). We again anticipate the quan-
tization of spin, where the eigenvalues of J3 are ±1/2 for a spin-1/2 system.
In this basis, our angular momentum operator is:

J =
1

2
σσσ, (84)

where σσσ are the Pauli matrices:

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (85)

These are Hermitian matrices, hence correspond to observables.
Suppose, in this basis, we have the state

ψ =
1√
2

(
1
1

)
, (86)

which is a superposition of J3 = ±1/2 eigenstates. We may compute expec-
tation values of angular momentum for this state:

〈J1〉 =
1

4
(1, 1)

(
0 1
1 0

)(
1
1

)
=
1

2
(87)

〈J2〉 =
1

4
(1, 1)

(
0 −i
i 0

)(
1
1

)
= 0 (88)

〈J3〉 =
1

4
(1, 1)

(
1 0
0 −1

)(
1
1

)
= 0. (89)
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To obtain the second moments, we notice that σ2
i = 1, i = 1, 2, 3. Thus,

〈J2
i 〉 =

1

4
, i = 1, 2, 3, (90)

hence

(∆J1)
2 = 〈J2

1 〉 − 〈J1〉2 = 1

4
−
(
1

2

)2

= 0, (91)

(∆J2)
2 =

1

4
− 0 = 1

4
, (92)

(∆J3)
2 =

1

4
− 0 = 1

4
. (93)

Let us check the uncertainty relation involving J1 and J2:

∆J1∆J2 = 0 · 1
2
= 0 ≥ 1

2
|〈J3〉| = 0. (94)

So this relation is satisfied. Physically, it may readily be seen that our state is
actually an eigenstate of J1 with eigenvalue 1/2. It is a superposition of J2 =
±1

2
eigenstates. Even though our lower bound on the product of uncertainties

is zero, and is achieved, we cannot measure J1 and J2 simultaneously with
arbitrary precision. As soon as we know J1 = 1/2, a measurement of J2

will yield ±1/2 with equal probability. Alternatively, if we first measure J2,
obtaining a value of either 1/2 or −1/2, a subsequent measurement of J1 will
yield ±1/2 with equal probability. The measurement of J2 has disturbed the
state.
It should perhaps be remarked that the term “precision” here is in the

frequency sense: Imagine that you can prepare the identical state many times
and repeat the measurements. The measurements will yield different results
among the samplings, with expectation values as we have calculated, in the
limit of averaging over an infinite number of samplings.
Finally, let us also look at:

∆J2∆J3 =
1

2
· 1
2
=
1

4
≥ 1

2
|〈J1〉| = 1

4
. (95)

Again, the uncertainty principle is satisfied.
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6 Exercises

1. Show that L2 is complete.

2. Complete the proof that the space L2(a, b) is separable.

3. Show that if x ∈ H , where H is a separable Hilbert space, is orthogonal
to every vector in a dense set, then x = 0.

4. Complete the proof of the Schwarz inequality.

5. Complete the derivation of Eqns. 80, 81, and 82.

6. Time Reversal in Quantum Mechanics:

We wish to define an operation of time reversal, denoted by T , in
quantum mechanics. We demand that T be a “physically acceptable”
transformation, i.e., that transformed states are also elements of the
Hilbert space of acceptable wave functions, and that it be consistent
with the commutation relations between observables. We also demand
that T have the appropriate classical correspondence with the classical
time reversal operation.

Consider a system of structureless (“fundamental”) particles and let
8X = (X1, X2, X3) and 8P = (P1, P2, P3) be the position and momentum
operators (observables) corresponding to one of the particles in the
system. The commutation relations are, of course:

[Pm, Xn] = −iδmn,

[Pm, Pn] = 0,

[Xm, Xn] = 0.

The time reversal operation T : t → t′ = −t, operating on a state
vector gives (in Schrödinger picture – you may consider how to make
the equivalent statement in the Heisenberg picture):

T |ψ(t)〉 = |ψ′(t′)〉.
The time reversal of any operator, Q, representing an observable is
then:
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Q′ = TQT−1

(a) By considering the commutation relations above, and the obvious
classical correspondence for these operators, show that

T iT−1 = −i.

Thus, we conclude that T must contain the complex conjugation
operator K:

KzK−1 = z∗,

for any complex number z, we require that T on any state yields
another state in the Hilbert space. We can argue that (for you
to think about) we can write: T = UK, where U is a unitary
transformation. If we operate twice on a state with T , then we
should restore the original state, up to a phase:

T 2 = η1,

where η is a pure phase factor (modulus = 1).

(b) Prove that η = ±1. Hence, T 2 = ±1. Which phase applies in any
given physical situation depends on the nature of U , and will turn
out to have something to do with spin, as we shall examine in the
future.

7. Let us consider the action of Gallilean transformations on a quantum
mechanical wave function. We restrict ourselves here to the “proper”
Gallilean Transformations: (i) translations; (ii) velocity boosts; (iii)
rotations. We shall consider a transformation to be acting on the state
(not on the observer). Thus, a translation by xxx0 on a state localized at
xxx1 produces a new state, localized at xxx1+xxx0. In “configuration space”,
we have a wave function of the form ψ(xxx, t). A translation T (xxx0) by
xxx0 of this state yields a new state (please don’t confuse this translation
operator with the time reversal operator of the previous problem, also
denoted by T , but without an argument):

ψ′(xxx) = T (xxx0)ψ(xxx, t) = ψ(xxx− xxx0, t). (96)
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Note that we might have attempted a definition of this transformation
with an additional introduction of some overall phase factor. However,
it is our interest to define such operators as simply as possible, consis-
tent with what should give a valid classical correspondence. Whether
we have succeeded in preserving the appropriate classical limit must be
checked, of course.

Consider a free particle of massm. The momentum space wave function
is

ψ̂(ppp, t) = f̂(ppp) exp

(
−itp2

2m

)
, (97)

where p = |ppp|. The configuration space wave function is related by the
(inverse) Fourier transform:

ψ(xxx, t) =
1

(2π)3/2

∫
(∞)

d3(ppp)eixxx·pppψ̂(ppp, t). (98)

Obtain simple transformation laws, on both the momentum and config-
uration space wave functions, for each of the following proper Gallilean
transformations:

(a) Translation by xxx0: T (xxx0) (note that we have already seen the result
in configuration space).

(b) Translation by time t0: M(t0).

(c) Velocity boost by vvv0: V (vvv0). (Hint: first find

ψ̂′(ppp, 0) = f̂ ′(ppp) = V (vvv0)f̂(ppp), (99)

then
ψ̂′(ppp, t) = f̂ ′(ppp)e−itp2/2m, (100)

etc.)

(d) Rotation about the origin given by 3× 3 matrix R: U(R).

Make sure your answers make sense to you in terms of classical corre-
spondence.

8. Consider the (real) vector space of real continuous functions with con-
tinuous first derivatives in the closed interval [0, 1]. Which of the fol-
lowing defines a scalar product?
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(a) 〈f |g〉 = ∫ 1
0 f

′(x)g′(x)dx+ f(0)g(0)

(b) 〈f |g〉 = ∫ 1
0 f

′(x)g′(x)dx

9. Consider the following equation in E∞ (infinite-dimensional Euclidean
space – let the scalar product be 〈x|y〉 ≡ ∑∞

n=1 x
∗
nyn):

Cx = a,

where the operator C is defined by (in some basis):

C(x1, x2, . . .) = (0, x1, x2, . . .)

Is C:

(a) A bounded operator [i.e., does there exist a non-negative real
number α such that, for every x ∈ E∞, we have |Cx| ≤ α|x|
(“|x|” denotes the norm:

√
〈x|x〉)]?

(b) A linear operator?

(c) A hermitian operator (i.e., does 〈x|Cy〉 = 〈Cx|y〉)?
(d) Does Cx = 0 have a non-trivial solution? Does Cx = a always

have a solution?

Now answer the same questions for the operator defined by:

G(α1, α2, . . .) = (α1, α2/2, α3/3, . . .). (101)

Note that we require a vector to be normalizable if it is to belong to
E∞ – i.e., the scalar product of a vector with itself must exist.

10. Let f ∈ L2(−π, π) be a summable complex function on the real interval
[−π, π] (with Lebesgue measure).
(a) Define the scalar product by:

〈f |g〉 =
∫ π

−π
f ∗(x)g(x)dx, (102)

for f, g ∈ L2(−π, π). Starting with the intuitive, but non-trivial,
assumption that there is no vector in L2(−π, π) other than the
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trivial vector (f ∼ 0) which is orthogonal to all of the functions
sin(nx), cos(nx), n = 0, 1, 2, . . ., show that any vector f may be
expanded as:

f(x) =
∞∑

n=0

(an cosnx+ bn sinnx) , (103)

where

a0 =
1

2π

∫ π

−π
f(x)dx (104)

an =
1

π

∫ π

−π
f(x) cosnxdx (n > 0) (105)

bn =
1

π

∫ π

−π
f(x) sinnxdx. (106)

[You may consult a text such as Fano’s Mathematical Methods of
Quantum Mechanics for a full proof of the completeness of such
functions.]

(b) Consider the function:

f(x) =



−1 x < 0,
0 x = 0,
+1 x > 0.

(107)

Determine the coefficients an, bn, n = 0, 1, 2, . . . for this function
for the expansion of part (a).

(c) We wish to investigate the partial sums in this expansion:

fN(x) =
N∑

n=0

(an cosnx+ bn sin nx) . (108)

Find the position, xN of the first maximum of fN (for x > 0).
Evaluate the limit of fN(xN ) as N → ∞. Give a numerical an-
swer. In so doing, you are finding the maximum value of the series
expansion in the limit of an infinite number of terms. [You may
find the following identity useful:

N∑
n=1

cos(2n− 1)x = 1

2

sin 2Nx

sin x
.] (109)
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(d) Obviously, the maximum value of f(x), defined in part (b), is 1.
If the value you found for the series expansion is different from 1,
comment on the possible reconciliation of this difference with the
theorem you demonstrated in part (a).

11. Show that, with a suitable measure, any summation over discrete in-
dices may be written as a Lebesgue integral:

∞∑
n=1

f(xn) =
∫
{x}

f(x)µ(dx). (110)

12. Resonances II: Quantum mechanical resonances – Earlier we investi-
gated some features of a classical oscillator with a “resonant” behavior
under a driving force. Let us begin now to develop a quantum me-
chanical analogue, of relevance also to scattering and particle decays.
For concreteness, consider an atom with two energy levels, E0 < E1,
where the transition E0 → E1 may be effected by photon absorption,
and the decay E1 → E0 via photon emission. Because the level E1

has a finite lifetime – we denote the mean lifetime of the E1 state by
τ – it does not have a precisely defined energy. In other words, it has
a finite width, which (assuming that E0 is the ground state) can be
measured by measuring precisely the distribution of photon energies in
the E1 → E0 decay. Call the mean of this distribution ω0.

(a) Assume that the amplitude for the atom to be in state E1 is given
by the damped oscillatory form:

ψ(t) = ψ0 e
−iω0t− t

2τ

Show that the mean lifetime is given by τ , as desired.

(b) Note that our amplitude above satisfies a “Schrödinger equation”:

i
dψ(t)

dt
= (ω0 − i

2τ
) ψ(t)

Suppose we add a sinusoidal “driving force” Fe−iωt on the right
hand side, to describe the situation where we illuminate the atom
with monochromatic light of frequency ω. Solve the resulting in-
homogeneous equation for its steady state solution.
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(c) Convince yourself (e.g., by “conservation of probability”) that the
intensity of the radiation emitted by the atom in this steady-state
situation is just | ψ(t) |2. Thus, the incident radiation is “scat-
tered” by our atom, with the amount of scattering proportional
to the emitted radiation intensity in the steady state. Give an
expression for the amount of radiation scattered (per unit time,
per unit amplitude of the incident radiation), as a function of
ω. For convenience, normalize your expression to the amount of
scattering at ω = ω0. Determine the full-width at half maximum
(FWHM) of this function of ω, and relate to the lifetime τ .

Note that the “Breit-Wigner” function is just the Cauchy distribution
in probability.

13. Time Reversal in Quantum Mechanics, Part II

We earlier showed that the time reversal operator, T , could be written
in the form:

T = UK,

where K is the complex conjugation operator and U is a unitary oper-
ator. We also found that

T 2 = ±1.
Consider a spinless, structureless particle. All kinematic operators for
such a particle may be written in terms of the 8X and 8P operators,
where

[Pj , Xk] = −iδjk

T 8XT−1 = 8X

T 8PT−1 = −8P

(where the latter two equations follow simply from classical correspon-
dence).

If we work in a basis consisting of the eigenvectors of 8X, the eigenvalues
are simply the real position vectors, and hence:

U 8XU−1 = 8X.

In this basis, the matrix elements of 8P may be evaluated:

8P = −i8∇ :

29



〈8x1 | 8P | 8x2〉 =
∫
(∞)

δ(3)(8x− 8x1)(−i8∇x)δ
(3)(8x− 8x2)d

(3)8x

= −i8∇x1δ
(3)(8x1 − 8x2).

Thus, these matrix elements are pure imaginary, and

K 8PK−1 = −8P ,

which implies finally
U 8PU−1 = 8P .

We conclude that for our spinless, structureless particle:

U = 1eiθ,

where the phase θ may be chosen to be zero if we wish. In any event,
we have:

T = eiθK,

and
T 2 = eiθKeiθK = 1.

(a) Show that, for a spin 1/2 particle, we may in the Pauli representa-
tion (that is, an angular momentum basis for our spin-1/2 system
such that the angular momentum operators are given by one-half
the Pauli matrices) write:

T = σ2K,

and hence show that:
T 2 = −1.

Note that the point here is to consider the classical correspondence
for the action of time reversal on angular momentum.

By considering a direct product space made up of many spin-0
and spin 1/2 states (or by other equivalent arguments), this result
may be generalized: If the total spin is 1/2-integral, then T 2 = −1;
otherwise T 2 = +1.
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(b) Show the following useful general property of an antiunitary op-
erator such as T :

Let
|ψ′〉 = T |ψ〉
|φ′〉 = T |φ〉.

Then
〈ψ′|φ′〉 = 〈φ|ψ〉.

This, of course, should agree nicely with your intuition about what
time reversal should do to this kind of scalar product.

(c) Show that, if |ψ〉 is a state vector in an “odd” system (T 2 = −1),
then T |ψ〉 is orthogonal to |ψ〉.

14. Suppose we have a particle of mass m in a one-dimensional potential
V = 1

2
kx2 (and the motion is in one dimension). What is the minimum

energy that this system can have, consistent with the uncertainty prin-
ciple? [The uncertainty relation is a handy tool for making estimates
of such things as ground state energies.]
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