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1 Exercises

1. We have reviewed the Bohr atom briefly. This atom is held together
by electromagnetism. We may consider the very similar problem of a
gravitationally bound “Bohr atom”. Part of the point of this problem is
to give you some practice making calculations with our simple h̄ = c = 1
units, so I hope you will attempt your calculations in this spirit. The
gravitational potential between two objects of masses m1 and m2 is

V = −Gm1m2

r
,

where r = |rrr1 − rrr2|, and
GN = 6.67× 10−11 m3kg−1s−2, (1)

= 6.71× 10−39 GeV−2, (2)

is Newton’s constant.

(a) With the same quantization condition as for Bohr’s atom, find
the formulas for the energy levels, relative velocities, and relative
separations, for a “gravity atom”. Let n be the quantum level
(i.e., n = 1, 2, 3, . . . is the orbital angular momentum).

Solution: First, let us write:

V =
−GmM

r
,

where M = m1 + m2 and m is the reduced mass. The virial
theorem argument gives, for a circular orbit,

T = −1

2
V =

1

2

GmM

r
=

1

2
mv2,

where v is the relative speed and non-relativistic motion is as-
sumed (but should be checked!). Now we set mvr = n, and see
what this implies. The energy is:

E = T + V = −1

2

GMm

r
= −1

2
mv2,
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and thus

r =
n2

GMm

1

m
(3)

v =
GMm

n
(4)

E = −1

2

(
GMm

n

)2

m. (5)

(b) Find n for the earth-sun system. Is quantum mechanics important
here?

Solution: The period is approximately T = 2πr/v = π107 s, and
the scale m is approximately m ≈ moplus = 6× 1027 g. The orbit
radius is r = 1.5× 1013 cm. Thus,

rv =
2πr2

T
=
n

m
, (6)

or

n =
2πmr2

T

= 2π
6× 1027(g)[0.511(MeV)/(9.11× 10−28(g)]2.25× 1052(fm-fm)

π107(s)3× 1023(fm/s)200(MeV-fm)

=
2× 6× .511× 2.25

9.11× 3× 2
1027+28+52−7−23−2

≈ 2× 1074. (7)

The levels for such high values of n are extremely closely spaced,
hence the “quantumness” is essentially invisible.

(c) What would r be for the ground state of the earth-sun system
(give answer in meters)?

Solution: Since r ∝ n2, and r = 1.5× 1026 fm for n = 2× 1074,
we have for n = 1:

r1 =
1.5× 1026

4× 10148
fm ≈ 4× 10−123 fm, (8)

a very small distance indeed!
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(d) Consider a gravitationally bound system of two neutrons, where
we suppose that we have “turned off” other potentially important
interactions (such as the strong interaction). What is the ground
state energy (in GeV) and the ground state separation (in meters)
for this system? Is gravity important compared with other forces
for a real system of two neutrons in a real ground state?

Solution: We’ll approximate the mass of the neutron as mn = 1
GeV for this exercise. The reduced mass is m = 1/2mn and the
total mass is M = 2mn. The ground state energy corresponds to
n = 1 in this model:

E1 = −1

2
G2(2m)2

m

2

2m

2
= −1

4
G2m5. (9)

Newton’s constant is, approximately,

G = 6.7× 10−39 GeV−2. (10)

Thus,
E1 ≈ −10−77 GeV. (11)

The ground state separation between the two neutrons in this
model is

r1 ≈ 2

Gm3
≈ 2× (200 MeV-fm)× (10−15 m/fm

(6.7× 10−39 GeV)× (103 MeV/GeV)
≈ 6×1022 m.

(12)
Nuclear sizes are of order 1 fm, and nuclear binding energies are
of order MeV (e.g., the binding energy of the deuteron is approxi-
mately 2 MeV). It appears that gravity is unimportant compared
with the strong interaction (at least) for a system of two neutrons
which are not far apart.

(e) Gravity may be important in a quantum mechanical system if the
interaction potential is comparable with other forces. For exam-
ple, the electromagnetic strength is characterized by e2 = α =
1/137, and the strong interaction (though not strictly Coulom-
bic), is characterized by a larger number, αs ≈ 1. Supposing we
have a system of two equal masses, determine the mass (in GeV),
such that the corresponding gravitational interaction strength is
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equal to one. That is, the potential energy should be given sim-
ply by 1/r (cf., V = e2/r for two electrons in electromagnetism).
[This mass has a name; do you know what it is?]

Solution: We wish to find the mass MP such that

|V (r)| = 1

r
=
GM2

P

r
. (13)

Hence, the “Planck mass” is

MP =
1√
G

=
1√

6.7× 10−39 GeV−2
≈ 1019 GeV. (14)

2. Resonances I: An ensemble of neutron decays, observed from time t = 0,
will exhibit the characteristic radioactive decay law:

N(t) = N(0)e−t/τ , (15)

where τ = 886.7 ± 1.9 s (Review of Particle Properties, 2000) is the
mean lifetime of the neutron (convince yourself that this should be
the case). Also, if an ensemble of neutrons were each weighed very
precisely, it would be found that the mass distribution has a (small)
width. The full width at half maximum (FWHM) of this distribution
is typically denoted by Γ. The mean lifetime is inversely related to this
width: τ = 1/Γ.

(a) What is the width of the neutron, in electron volts?

Solution: The width of the mass distribution is

Γ =
1

τ
=

(197.3 Mev-fm)(106 eV/MeV)

(886.7± 1.9 s)(3× 1023 fm/s
) = (7.417±0.016)×10−19 eV

(b) Classical resonances: Let us probe a bit what this “width” means,
and what it has to do with decay rate. We’ll start with a classical
example: Consider a damped, driven harmonic oscillator:

ẍ+ Γẋ+ ω2
0x = cosωt

Determine the frequency response of this classical oscillator, i.e.,
determine the square of the amplitude of oscillation as a function
of ω. (Why the square?)
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Solution: The square of the amplitude is interesting because it
is proportional to the stored energy. The general solution to the
motion is the sum of the solution to the homogeneous equation
plus a particular solution to the inhomogeneous equation. Because
the solution to the homogeneous equation is transient (due to the
damping term), we need only concern ourselves with a particular
solution, for which we take:

x(t) = A cos(ωt+ φ). (16)

We substitute this into the differential equation, obtaining:

−ω2A cos(ωt+ φ)− ΓωA sin(ωt+ φ) + ω2
0A cos(ωt+ φ) = cosωt.

(17)
We may evaluate this at ωt+ φ = 0,

−A(ω2 − ω2
0) = cos φ, (18)

and at ωt+ φ = π/2,

−AΓω = sinφ. (19)

Using sin2 φ+ cos2 φ = 1, we thus find

A2 =
1

(ω2 − ω2
0)

2 + ω2Γ2
. (20)

(c) In the limit of a narrow resonance, what is the full width at half
maximum of the distribution you found in part b.

Solution: The peak of the distribution is at

d(1/A2)

dω2
= 0 = 2(ω2 − ω2

0) + Γ2, (21)

or ω2 = ω2
0 − Γ2/2. The value of A2 at the peak is therefore

A2
max =

1

Γ2(ω2
0 − Γ2/4)

≈ 1

ω2
0Γ

2
, (22)

the approximation being in the “narrow resonance” limit, ω0 � Γ.
Thus, the amplitude at half-maximum is

1

2

1

Γ2(ω2
0 − Γ2/4)

=
1

(ω2
h − omega2

0)
2 + ω2

hΓ
2
, (23)
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where ωh are the frequencies at half maximum. Taking the inverse
of both sides, we obtain a quadratic equation in ω2

h − ω2
0, with

solution

ω2
h − ω2

0 =
Γ2

2

[
−1 +

√
(2ω0/Γ)2 − 1

]
. (24)

In the narrow resonance limit, we find that FWHM= Γ.

(d) Now suppose the driving force is turned off. How does the energy
stored in the oscillator change with time? Find the “lifetime” of
this oscillator. In this classical example, I mean the time it takes
for the oscillator to reach e−1 of its original energy. Your answer
should be very simply related to your answer for part c).

Solution: Once the driving force is removed, the oscillations
damp down according to the solution to the homogeneous equa-
tion:

x(t) = Ae−Γt/2 cos
(√
ω2

0 − Γ2/4 t
)
. (25)

The stored energy is proportional to the square of the maximum
amplitude of each cycle, in the limit ω0 � Γ. Hence the time to
decay to 1/e of the initial stored energy is just 1/Γ.

3. The Bohr model for the atom, while wrong, gave some remarkable
agreement with experiment, and a means of estimating atomic scales
as long as we didn’t push the model too hard. Let’s play with an-
other, wrong, model, in this problem, the “plum pudding” model of
J.J. Thomson. In this model, the atomic electrons are embedded in
a region of neutralizing positive charge. We assume that, within the
radius of the atom, the positive charge is uniformly distributed. We
consider an atom with atomic number Z, but which has been ion-
ized such that only one electron remains. A simple calculation with
Maxwell’s divergence equation yields that the electric field inside the
atom, due to the positive charge distribution, is linear in radius. The
force on the electron can therefore be written as:

Fr = −eEr = −αkr,

where −e is the electron charge, α = e2, and k depends on the radius
R of the atom, and on Z.
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(a) Write down the Hamiltonian for the electron in this “atom”, mak-
ing sure you define any quantities not already defined above. As-
sume that any contribution from radii greater than R may be
neglected.

Solution: Let m be the reduced mass of the electron-postive
charge system, and ppp be the relative momentum vector with mag-
nitude p = mv. The Hamiltonian is:

H =
p2

2m
+

1

2
αkr2.

(b) Assuming circular orbits, use the Bohr quantization condition on
angular momentum to derive the allowed energy spectrum.

Solution: The Bohr quantization condition is that the angular
momentum is quantized:

L = mvr = n,

for an orbit of radius r. To get the energy spectrum, we may
consider that the centripetal and electrostatic forces must be equal
and opposite:

αkr = mv2/r.

Hence,

v2 =
αk

m
r2

r2 =
n√
αkm

v2 =
n

m

√
αk

m

And finally:

En = n

√
αk

m
,

where n = 1, 2, . . .

(c) For the hydrogen atom, the ground state energy is -13.6 eV. Note
that we have to be a bit careful now in discussing the energy, since

7



we need to know where we our reference (zero) is. Also, our for-
mula for the spectrum in part (b) must have a cut-off somewhere
due to the finite atom size. However, we’ll circumvent the com-
plication here by considering the difference between the ground
state and the first excited state, which for hydrogen is about 10
eV. Using this fact, determine the radius of the ground state orbit,
expressing your answer in Å to one significant digit.

[We really ought to check that your answer to part (c) is consistent
with the model, i.e., whether the radius obtained is less than R
or not. But I’ll leave this to your own amusement.]

Solution: The ground state radius, r0, in tems of this energy

difference, ∆ =
√
αk/m = 10 eV, is:

r0 =

√
1

∆m

=

√
1

(10 eV)(0.5Mev)
(106 eV/MeV)(200MeV fm)(10−5 Å/fm)

= 0.9 Å

(1 Å is an acceptable answer here also.)
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