Physics 195a Course Notes

Solving the Schrödinger Equation: Resolvents

Solutions to Exercises

021209 F. Porter

1 Exercises

- 1. Prove identities (12) and (13).
- 2. Prove the power series expansion for resolvent G(z) (Eqn. 2):

$$G(z) = G(z_0) \sum_{n=0}^{\infty} [(z - z_0)G(z_0)]^n$$
.

You may wish to attempt to do this either "directly", or via iteration on the identity of Eqn. 11.

- 3. Prove the result in Eqn. ??.
- 4. Let's consider once again the Hamiltonian

$$H = -\frac{1}{2m} \frac{d^2}{dx^2},\tag{1}$$

but now in configuration space $x \in [a, b]$ ("infinite square well").

(a) Construct the Green's function, G(x, y; z) for this problem.

Please do not look at this solution until you have turned in problem set number 8

Solution: To construct the Green's function, we look for solutions to:

$$Hu(x) = -\frac{1}{2m} \frac{d^2}{dx^2} u(x; z) = zu(x; z).$$
 (2)

The solutions may be expressed in the form

$$u(x;z) = A\sin\rho(x+\alpha),\tag{3}$$

where $\rho \equiv \sqrt{2mz}$. The left and right solutions, giving the boundary conditions u(a) = u(b) = 0 are thus:

$$u_L(x;z) = A\sin\rho(x-a) \tag{4}$$

$$u_R(x;z) = B\sin\rho(b-x). \tag{5}$$

The Green's function is:

$$G(x, y; z) \equiv \frac{2m}{W(z)} \left[u_L(x; z) u_R(y; z) \theta(y - x) + u_L(y; z) u_R(x; z) \theta(x - y) \right],$$
(6)

where the Wronskian is

$$W(z) \equiv u'_{L}(x;z)u_{R}(x;z) - u_{L}(x;z)u'_{R}(x;z). \tag{7}$$

Since the Wronskian is independent of x, we pick a convenient place to evaluate it, x = b:

$$W(z) = AB\rho \sin \rho (b - a). \tag{8}$$

Hence, the Green's function is

$$G(x, y; z) = \frac{2m}{\rho \sin \rho (b - a)}$$

$$\times \left[\sin \rho (x - a) \sin \rho (b - y) \theta (y - x) + \sin \rho (y - a) \sin \rho (b - x) \theta (x - y) \right].$$
(9)

(b) From your answer to part (a), determine the spectrum of H. **Solution:** We first remark that G is regular at $\rho = 0$, hence at z = 0. The poles appear at:

$$\sqrt{2mz}(b-a) = k\pi, \quad k = \pm 1, \pm 2, \dots$$
 (10)

That is, the eigenvalues of H are:

$$\omega_k = \frac{\pi^2 k^2}{2m(b-a)^2}, \quad k = 1, 2, \dots$$
 (11)